Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Coi \(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}\)
\(\Rightarrow2A=2x\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}\right)\)
\(=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}\)
\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\)
\(=\frac{1}{1.2}-\frac{1}{99.100}\)
\(=\frac{4950}{9900}-\frac{1}{9900}\)
\(=\frac{4949}{9900}\)
Đặt A=1.2.3+2.3.4+3.4.5+4.5.6+...+98.99.100
4A=(1.2.3+2.3.4+3.4.5+4.5.6+...+98.99.100)4
4A=1.2.3(4-0)+2.3.4(5-1)+3.4.5(6-2)+4.5.6(7-3)+...+98.99.100(101-97)
4A=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+4.5.6.7-3.4.5.6+...+98.99.100.101-97.98.99.100
4A=1.2.3.4-1.2.3.4+2.3.4.5-2.3.4.5+3.4.5.6-3.4.5.6+...+97.98.99.100-97.98.99.100+98.99.100.101
4A=98.99.100.101
=>A=98.99.100.101/4
đặt A=1.2.3+2.3.4+3.4.5+...+98.99.100
A.4=1.2.3.4+2.3.4.4+3.4.5.4+..+98.99.100.4
A.4=1.2.3(4-0)+2.3.4.(5-1)+3.4.5.(6-2)+......+98.99.100.(101-97)
a.4=1.2.3.4-0+2.3.4.5-2.3.4+3.4.5.6-2.3.4.5+...+98.99.100.101-97.98.99.100
A.4=98.99.100.101
A.4=97990200
A= 97990200:4
A= 24497550
Phải là phân số \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}\) chứ !
a)Đặt M=1/1.2+1/2.3+...+1/99.100
M=1-1/2+1/2-1/3+...+1/99-1/100
M=1-1/100
M=99/100
A = \(\dfrac{2}{35}\) + \(\dfrac{4}{77}\) + \(\dfrac{2}{143}\) + \(\dfrac{4}{221}\) + \(\dfrac{2}{323}\) + \(\dfrac{4}{437}\) + \(\dfrac{2}{575}\)
A = \(\dfrac{2}{5\times7}\)+\(\dfrac{4}{7\times11}\)+\(\dfrac{2}{11\times13}\)+\(\dfrac{4}{13\times17}\)+\(\dfrac{2}{17\times19}\)+\(\dfrac{4}{19\times23}\)+\(\dfrac{2}{23\times25}\)
A = \(\dfrac{1}{5}\)-\(\dfrac{1}{7}\)+ \(\dfrac{1}{7}\) - \(\dfrac{1}{11}\)+\(\dfrac{1}{11}\)-\(\dfrac{1}{13}\)+\(\dfrac{1}{13}\)-\(\dfrac{1}{17}\)+\(\dfrac{1}{17}\)-\(\dfrac{1}{19}\)+\(\dfrac{1}{19}\)-\(\dfrac{1}{23}\)+\(\dfrac{1}{23}\)-\(\dfrac{1}{25}\)
A = \(\dfrac{1}{5}\) - \(\dfrac{1}{25}\)
A = \(\dfrac{4}{25}\)
\(\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}+\dfrac{1}{128}\\ =\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{16}+...+\dfrac{1}{64}-\dfrac{1}{128}\\ =\dfrac{1}{2}-\dfrac{1}{128}\\ =\dfrac{63}{128}\)
\(7m^28dm^2=7,08m^2\)
Mới thế đã hai năm trôi qua,câu trả lời từ mọi người vẫn KO XUẤT HIỆN.
Ko biết sau này câu trả lời có xuất hiện hay ko...
\(2C=\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+\dfrac{2}{98.99.100}\)
\(=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{98.99}-\dfrac{1}{99.100}\)
\(=\dfrac{1}{1.2}-\dfrac{1}{99.100}=\dfrac{50.99-1}{100.99}=\dfrac{4949}{9900}\)
`A=1/[1.2.3]+1/[2.3.4]+....+1/[98.99.100]`
`A=1/2.(2/[1.2.3]+2/[2.3.4]+....+2/[98.99.100])`
`A=1/2.(1/[1.2]-1/[2.3]+1/[2.3]-1/[3.4]+....+1/[98.99]-1/[99.100])`
`A=1/2.(1/[1.2]-1/[99.100])`
`A=1/2.(1/2-1/9900)`
`A=1/2.(4950/9900-1/9900)`
`A=1/2 . 4949/9900`
`A=4949/19800`