K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2016

\(4S=\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{21}-\frac{1}{25}=\frac{1}{5}-\frac{1}{25}=\frac{4}{25}\)

\(S=\frac{4}{25}\times\frac{1}{4}=\frac{1}{25}\)

21 tháng 5 2016

\(4S=\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{21}-\frac{1}{25}=\frac{1}{5}-\frac{1}{25}=\frac{4}{25}\)

\(S=\frac{4}{25}\times\frac{1}{4}=\frac{1}{25}\)

22 tháng 11 2021

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a} đây là biểu thức gì\)

11 tháng 3 2019

\(A=\frac{-5}{7}+\frac{3}{4}+\frac{-1}{5}+\frac{-2}{7}+\frac{1}{4}\)

\(A=\left(\frac{-5}{7}+\frac{-2}{7}\right)+\left(\frac{3}{4}+\frac{1}{4}\right)+\frac{-1}{5}\)

\(A=-1+1+\frac{-1}{5}\)

\(A=\frac{-1}{5}\)

11 tháng 3 2019

\(B=\frac{-4}{12}+\frac{18}{45}+\frac{-6}{9}+\frac{-21}{35}+\frac{6}{30}\)

\(B=\frac{-1}{3}+\frac{2}{5}+\frac{-2}{3}+\frac{-3}{5}+\frac{1}{5}\)

\(B=\left(\frac{-1}{3}+\frac{-2}{3}\right)+\left(\frac{2}{5}+\frac{-3}{5}+\frac{1}{5}\right)\)

\(B=-1+0\)

\(B=-1\)

29 tháng 3 2016

A= 1/18 nhé bạn

xin lỗi vì mình không viết cách làm..........

HQ
Hà Quang Minh
Giáo viên
7 tháng 10 2023

a) \(\frac{{ - 3}}{7}.\frac{2}{5} + \frac{2}{5}.\left( { - \frac{5}{{14}}} \right) - \frac{{18}}{{35}}\)

\(\begin{array}{l} = \frac{2}{5}.\left( {\frac{{ - 3}}{7} + \frac{{ - 5}}{{14}}} \right) - \frac{{18}}{{35}}\\ = \frac{2}{5}.\left( {\frac{{ - 6}}{{14}} + \frac{{ - 5}}{{14}}} \right) - \frac{{18}}{{35}}\\ = \frac{2}{5}.\frac{{ - 11}}{{14}} - \frac{{18}}{{35}} = \frac{{ - 11}}{{35}} - \frac{{18}}{{35}} =  \frac{{ -29}}{{35}}\end{array}\)

b) \(\left( {\frac{2}{3} - \frac{5}{{11}} + \frac{1}{4}} \right):\left( {1 + \frac{5}{{12}} - \frac{7}{{11}}} \right)\)

\(\begin{array}{l} = \left( {\frac{{2.11.4}}{{3.11.4}} - \frac{{5.3.4}}{{11.3.4}} + \frac{{1.3.11}}{{4.3.11}}} \right):\left( {\frac{11.12}{11.12} + \frac{{5.11}}{{12.11}} - \frac{{7.12}}{{11.12}}} \right)\\ = \left( {\frac{{88 - 60 + 33}}{{121}}} \right):\left( { \frac{{121+55 - 84}}{{121}}} \right)\\ = \frac{{61}}{{121}}:\frac{{92}}{{121}} = \frac{{61}}{{121}}.\frac{{121}}{{92}}= \frac{{61}}{{92}}\end{array}\)

c) \(\left( {13,6 - 37,8} \right).\left( { - 3,2} \right)\)

\( = \left( { - 24,2} \right).\left( { - 3,2} \right) = 77,44\)

d) \(\left( { - 25,4} \right).\left( {18,5 + 43,6 - 16,8} \right):12,7\)

\(\begin{array}{l} = \left( { - 25,4} \right).\left( {62,1 - 16,8} \right):12,7\\ = \left( { - 25,4} \right).45,3:12,7\\ = \left( { - 25,4} \right):12,7.45,3\\ =  (- 2).45,3 =  - 90,6\end{array}\)

a: \(=\dfrac{2}{5}\cdot\left(-\dfrac{3}{7}-\dfrac{5}{14}\right)-\dfrac{18}{35}\)

\(=\dfrac{2}{5}\cdot\dfrac{-6-5}{14}-\dfrac{18}{35}\)

\(=\dfrac{2}{5}\cdot\dfrac{-11}{14}-\dfrac{18}{35}=-\dfrac{22}{70}-\dfrac{18}{35}=\dfrac{-58}{70}=-\dfrac{29}{35}\)

b: \(=\dfrac{88-60+33}{132}:\dfrac{132+55-84}{132}\)

\(=\dfrac{61}{132}\cdot\dfrac{132}{103}=\dfrac{61}{103}\)

c: \(=-24.2\cdot\left(-3.2\right)=24.2\cdot3.2=77.44\)

d: \(=\dfrac{-25.4}{12.7}\cdot45.3=-2\cdot45.3=-90.6\)

6 tháng 7 2017

\(A=\frac{17\frac{2}{4}\cdot\frac{17}{5}+3\frac{2}{5}\cdot82\frac{1}{4}}{2\cdot34-3\cdot17}\)

\(A=\frac{\frac{71}{4}\cdot\frac{17}{5}+\frac{17}{5}\cdot\frac{329}{4}}{68-51}\)

\(A=\frac{\frac{17}{5}\cdot\left(\frac{71}{4}+\frac{329}{4}\right)}{17}=\frac{\frac{17}{5}\cdot100}{17}\)

\(\Rightarrow A=\frac{340}{17}=20\)

11 tháng 5 2016

đề này hỏi j

24 tháng 4 2017

a/ Ta có

\(200-\left(3+\frac{2}{3}+\frac{2}{4}+...+\frac{2}{100}\right)\)

\(=1+2\left(1-\frac{1}{3}\right)+2\left(1-\frac{1}{4}\right)+...+2\left(1-\frac{1}{100}\right)\)

\(=1+2\left(\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\right)\)

\(=2\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)\)

Thế lại bài toán ta được:

\(\frac{200-\left(3+\frac{2}{3}+\frac{2}{4}+...+\frac{2}{100}\right)}{\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}}\)

\(=\frac{2\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)}{\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}}=2\)

24 tháng 4 2017

b/ Ta có: 

A - B\(=\frac{-21}{10^{2016}}+\frac{12}{10^{2016}}+\frac{21}{10^{2017}}-\frac{12}{10^{2017}}\)

\(=\frac{9}{10^{2017}}-\frac{9}{10^{2016}}< 0\)

Vậy A < B