Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) nếu p = 2
=> p + 14 = 2 + 14 = 16 là hợp số ( loại )
+) nếu p = 3
=> p + 14 = 3 + 14 = 17 là số nguyên tố ( loại )
=> p + 28 = 3 + 28 = 31 là số nguyên tố ( loại )
nếu p > 3 thì có 2 dạng : 3k + 1 và 3k + 2
+) nếu p = 3k + 1 => p + 14 = 3k + 15 chia hết cho 3 là hợp số ( loại )
+ ) nếu p = 3k + 2 => p + 28 = 3k + 30 chia hết cho 3 là hợp số ( loại )
vậy số nguyên tố p cần tìm là 3
Ta nhận thấy
Tthừa số thứ nhất ở mẫu của phân số liền sau = thừa số thứ nhất của phân số liền trước + 4
Thừa số thứ hai ở mẫu của phân số liền sau = thừa số thứ hai của phân số liền trước + 2
\(\Rightarrow B=\frac{1}{2.3}+\frac{1}{6.5}+\frac{1}{10.7}+\frac{1}{14.9}+...+\frac{1}{198.101}\)
\(B=\frac{1}{2}\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\right)\)
\(4B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\)
\(4B=\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+\frac{9-7}{7.9}+...+\frac{101-99}{99.101}\)
\(4B=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}=1-\frac{1}{101}=\frac{100}{101}\)
\(B=\frac{100}{101.4}=\frac{25}{101}\)
\(A=\frac{1}{2.3}+\frac{1}{6.5}+\frac{1}{14.9}+...+\frac{1}{198.101}\)
\(A=\frac{1}{2}\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\right)\)
Ta thấy : thừa số thứ nhất ở mẫu của phân số liền sau = thừa số thứ nhất của phân số liền trước + 4
Thừa số thứ hai ở mẫu của phân số liền sau = thừa số thứ hai của phân số liền trước + 2
\(4A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\)
\(4A=\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+\frac{9-7}{7.9}+...+\frac{101-99}{99.101}\)
4A= \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}=1-\frac{1}{101}=\frac{100}{101}\)
\(A=\frac{100}{101.4}=\frac{25}{101}\)
\(A=\frac{1}{2.3}+\frac{1}{6.5}+\frac{1}{10.7}+...+\frac{1}{198.101}\)
\(A=2\times\left(\frac{1}{2.6}+\frac{1}{6.10}+\frac{1}{10.14}+...+\frac{1}{198.202}\right)\)
\(A=2\times\frac{1}{4}\times\left(\frac{1}{2}-\frac{1}{6}+\frac{1}{6}-\frac{1}{10}+\frac{1}{10}-\frac{1}{14}+...+\frac{1}{198}-\frac{1}{202}\right)\)
\(A=\frac{1}{2}\times\left(\frac{1}{2}-\frac{1}{202}\right)\)
\(A=\frac{1}{2}\times\frac{50}{101}\)
\(A=\frac{25}{101}\)
A = \(\dfrac{1}{2.3}\) + \(\dfrac{1}{6.5}\) + \(\dfrac{1}{10.7}\) + \(\dfrac{1}{14.9}\) + ... + \(\dfrac{1}{198.101}\)
= \(\dfrac{2}{2.6}\) + \(\dfrac{2}{6.10}\) + \(\dfrac{2}{10.14}\) + \(\dfrac{2}{14.18}\) + ... + \(\dfrac{2}{198.202}\)
= \(\dfrac{1}{2}\).( \(\dfrac{4}{2.6}\) + \(\dfrac{4}{6.10}\) + \(\dfrac{4}{10.14}\) + \(\dfrac{4}{14.18}\) + ... + \(\dfrac{4}{198.202}\) )
= \(\dfrac{1}{2}\).( \(\dfrac{1}{2}\)-\(\dfrac{1}{6}\)+\(\dfrac{1}{6}\)-\(\dfrac{1}{10}\)+\(\dfrac{1}{10}\)-\(\dfrac{1}{14}\)+\(\dfrac{1}{14}\)-\(\dfrac{1}{18}\)+ ... +\(\dfrac{1}{198}\)-\(\dfrac{1}{202}\) )
= \(\dfrac{1}{2}\).( \(\dfrac{1}{2}\)-\(\dfrac{1}{202}\)) = \(\dfrac{1}{2}\).\(\dfrac{50}{101}\) = \(\dfrac{50}{202}\)\(A=\frac{1}{2.3}+\frac{1}{6.5}+\frac{1}{10.7}+...+\frac{1}{198.101}\)
\(A=2.\left(\frac{1}{2.6}+\frac{1}{6.10}+\frac{1}{10.14}+...+\frac{1}{198.202}\right)\)
\(A=2.\frac{1}{4}.\left(\frac{1}{2}-\frac{1}{6}+\frac{1}{6}-\frac{1}{10}+\frac{1}{10}-\frac{1}{14}+...+\frac{1}{198}-\frac{1}{202}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{202}\right)\)
\(A=\frac{1}{2}.\frac{50}{201}\)
\(A=\frac{25}{101}\)
\(A=\frac{1}{2.3}+\frac{1}{6.5}+\frac{1}{10.7}+...+\frac{1}{198.101}\)
\(A=2.\left(\frac{1}{2.6}+\frac{1}{6.10}+\frac{1}{10.14}+...+\frac{1}{198.202}\right)\)
\(A=2.\frac{1}{4}.\left(\frac{1}{2}-\frac{1}{6}+\frac{1}{6}-\frac{1}{10}+\frac{1}{10}-\frac{1}{14}+...+\frac{1}{198}-\frac{1}{202}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{202}\right)\)
\(A=\frac{1}{2}.\frac{50}{201}\)
\(A=\frac{25}{101}\)
Như bạn kia là rất đúng
\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2021.2022}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2021}-\dfrac{1}{2022}\)
\(=1-\dfrac{1}{2022}=\dfrac{2021}{2022}\)
\(B=\dfrac{4}{3.7}+\dfrac{4}{7.11}+\dfrac{4}{11.15}+...+\dfrac{4}{107.111}\)
\(=\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{15}+...+\dfrac{1}{107}-\dfrac{1}{111}\)
\(=\dfrac{1}{3}-\dfrac{1}{111}=\dfrac{12}{37}\)
\(A=\frac{1}{2.3}+\frac{1}{6.5}+\frac{1}{10.7}+...+\frac{1}{198.101}\)
\(A=\frac{1}{2}\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\right)\)
\(4A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
\(4A=\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{101-99}{99.101}\)
\(4A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-...-\frac{1}{99}+\frac{1}{99}-\frac{1}{101}\)
\(4A=1-\frac{1}{101}=\frac{100}{101}\)
\(A=\frac{100}{101.4}=\frac{25}{101}\)
\(A=\frac{1}{2.3}+\frac{1}{6.5}+\frac{1}{10.7}+\frac{1}{14.9}+...+\frac{1}{198.101}\)
\(A=\frac{1}{2}\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\right)\)
\(4A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\)
\(4A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\)
\(4A=1-\frac{1}{101}=\frac{100}{101}\)
\(A=\frac{100}{101}:4=\frac{25}{101}\)
Giải:
Ta có:
\(P=\dfrac{1}{2.3}+\dfrac{1}{6.5}+\dfrac{1}{10.7}+...+\dfrac{1}{198.101}\)
\(=\dfrac{1}{2.1.3}+\dfrac{1}{2.3.5}+\dfrac{1}{2.5.7}+...+\dfrac{1}{2.99.101}\)
\(=\dfrac{1}{2}.\dfrac{1}{1.3}+\dfrac{1}{2}.\dfrac{1}{3.5}+\dfrac{1}{2}.\dfrac{1}{5.7}+...+\) \(\dfrac{1}{2}.\dfrac{1}{99.101}\)
\(=\dfrac{1}{2}\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{99.101}\right)\)
Đặt \(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{99.101}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{101}\right)=\dfrac{1}{2}.\dfrac{100}{101}=\dfrac{50}{101}\)
\(\Rightarrow P=\dfrac{1}{2}.\dfrac{50}{101}=\dfrac{25}{101}\)
Vậy \(P=\dfrac{25}{101}\)
\(P=\dfrac{1}{2.3}+\dfrac{1}{6.5}+\dfrac{1}{10.7}+...+\dfrac{1}{198.101}\)
\(P=\dfrac{1}{2}.\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+...+\dfrac{1}{99.101}\right)\)
\(4P=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{99.101}\)
\(4P=\dfrac{3-1}{1.3}+\dfrac{5-3}{3.5}+\dfrac{7-5}{5.7}+...+\dfrac{101-99}{99.101}\)
\(4P=\dfrac{3}{1.3}-\dfrac{1}{1.3}+\dfrac{5}{3.5}-\dfrac{3}{3.5}+\dfrac{7}{5.7}-\dfrac{5}{5.7}+...+\dfrac{101}{99.101}-\dfrac{99}{99.101}\)
\(4P=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\)
\(4P=1-\dfrac{1}{101}=\dfrac{100}{101}\)
\(P=\dfrac{25}{101}\)