Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x+2y)(2y-x) =(2y+x)(2y-x)
=(2y)\(^2\)-x\(^2\)
=4y\(^2\) -x\(^2\)
(\(\frac{1}{2}\)-3x)(\(\frac{1}{2}\)+3x)=(\(\frac{1}{2}\))\(^2\)-(3x)\(^2\)
=\(\frac{1}{4}\)-9x\(^2\)
a) \(\left(2x+1\right)^2+2.\left(2x+1\right)+1=\left(2x+2\right)^2\)
b) \(\left(3x-2y\right)^2+4.\left(3x-2y\right)+4\)
\(=\left(3x-2y\right)^2+2.\left(3x-2y\right).2+2^2\)
\(=\left(3x-2y+2\right)^2\)
5:
a: (2x-5)(2x+5)=4x^2-25
b: (3x-5y)(3x+5y)=9x^2-25y^2
c: (3x+7y)(3x-7y)=9x^2-49y^2
d: (2x-1)(2x+1)=4x^2-1
4:
a: 2003*2005=(2004-1)(2004+1)=2004^2-1<2004^2
b: 8(7^2+1)(7^4+1)(7^8+1)
=1/6*(7-1)(7+1)(7^2+1)(7^4+1)(7^8+1)
=1/6(7^2-1)(7^2+1)(7^4+1)(7^8+1)
=1/6(7^16-1)<7^16-1
5:
a: (2x-5)(2x+5)=4x^2-25
b: (3x-5y)(3x+5y)=9x^2-25y^2
c: (3x+7y)(3x-7y)=9x^2-49y^2
d: (2x-1)(2x+1)=4x^2-1
mik chỉ biết bài 5 thôi !
Bài 1
a)\(=x^2+2.x.\frac{3}{2}+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+2\)
\(=\left(x+\frac{3}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)
MIN = \(-\frac{1}{4}\)khi \(x+\frac{3}{2}=0\Rightarrow x=-\frac{3}{2}\)
\(\left(x+4\right)\left(x^2-4x+16\right)\)
\(=x^3-4x^2+16x+4x^2-16x+64\)
\(=x^3+64\)
\(\left(x-3y\right)\left(x^2+3xy+9y^2\right)\)
\(=x^2+3x^2y+9xy^2-3x^2y-9xy^2-27y^3\)
\(=\)\(x^2-27y^3\)
\(\left(\frac{1}{3}x+2y\right)\left(\frac{1}{9}x^2-\frac{2}{3xy}+4y^2\right)\)
\(=\)\(\frac{x^3}{27}-\frac{2}{9xy}+\frac{4xy^2}{3}+\frac{2x^2y}{9}-\frac{4y}{3xy}+8y^3\)
làm nốt nha
Gọi diện tích hình vuông là Shv.Khi đó mỗi ô vuông nhỏ có diện tích là Shv9 . Ta thấy ngay diện tích tam giác ABK bằng một nửa diện tích hình chữ nhật AKBH và bằng Shv9 .
Tương tự SAID=SDNC=SBMC=SABK=Shv9 và SIKMN=Shv9
Vậy thì SABCD=4.Shv9 +Shv9 =59 Shv
Vậy diện tích phần còn lại bằng 49 Shv
Suy ra diện tích hình vuông ABCD bằng 54 diện tích phần còn lại.
k mình nha
\(A=x^2-2x+1-x^2+4=5-2x\)
\(B=27x^3+8-x^2+9=27x^3-x^2+17\)
\(C=3x^2y-6xy^2-2x\left(x^2-2x^2y+x^2y^2\right)=3x^2y-6xy^2-2x^3+4x^3y-2x^3y^2\)
Em chỉ cần nhớ hằng đẳng thức và áp dụng là biến đổi được ^^
a) \(\left(x+2y\right)^2=x^2+2.x.2y+\left(2y\right)^2=x^2+4xy+4y^2\)
b) \(\left(3x-2y\right)^2=\left(3x\right)^2-2.3x.2y+\left(2y\right)^2=9x^2-12xy+4y^2\)
c) \(\left(3x-1\right)\left(3x+1\right)=\left(3x\right)^2-1^2=9x^2-1\)