Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\hept{\begin{cases}\left(x^2-9x\right)^2\ge0\\!y-2!\ge0\end{cases}\Rightarrow GTNN=10}\) đẳng thức đạt được khi y=2 và \(\orbr{\begin{cases}x=0\\x=9\end{cases}}\)
b)
cách 1: ghép tạo số hạng (x-2015)
E=x^9(x-2015)+x^8(x-2015)+....+x(x-2015)+x-1=2014 tại x=2015
hoặc
x^10-1=(x-1)(x^9+x^8+..+1) cái này cơ bản
-2014x^9-2014x-2014+2014 thêm 2014 bớt 2014
(x^9+x^8+..+1)(x-1-2014)+2014=(x-2015)(x^9+..+1)+2014=2014
a ) Vì | x + 1 | ≥ 0 ∀ x ∈ N
Để A = | x + 1 | + 1,7 min <=> x + 1 = 0 => x = - 1
Vậy min A = 1,7 <=> x = - 1
b ) Vì B = | x - 2/3 | ≥ 0 ∀ x ∈ N
Để | x -2/3 | + 3/7 min <=> x - 2/3 = 0 => x = 2/3
Vậy min B = 3/7 <=> x = 2/3
B = |x - 2| + |x - 6| + 5
Áp dụng bđt |a| + |b| ≥ |a + b| ta có :
B = |x - 2| + |x - 6| + 5 = |x - 2| + |6 - x| + 5
B ≥ |x - 2 + 6 - x| + 5 = 4 + 5 = 9
Dấu "=" xảy ra <=> (x - 2)(x - 6) ≥ 0
<=> 2 ≤ x ≤ 6
Vậy gtnn của B là 9 tại 2 ≤ x ≤ 6
\(\text{a)Để C đạt GTNN}\)
\(\Rightarrow\hept{\begin{cases}\left(x+2\right)^2\\\left(y-\frac{1}{5}\right)^2\end{cases}\ge0}\)
\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2\ge0\)
\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\ge0-10\)
\(\Rightarrow C\ge-10\)
\(\text{Vậy minC=-10 khi x=-2;y= }\frac{1}{5}\)
b)\(\text{Để D đạt GTLN}\)
=>(2x-3)2+5 đạt GTNN
Mà (2x-3)2\(\ge\)5
\(\Rightarrow GTLN\)của \(A=\frac{4}{5}\)khi \(x=\frac{3}{2}\)
a) |x+1|>/0
dấu "=" xảy ra khi x=-1
vậy Min A=1,7 khi x=-1
b)|x-2/3|>/0
dấu"=" xảy ra khi x=2/3
vậy Min A=3/7 khi x=2/3
c) bạn viết đề câu c rõ chút đc ko
a, Amin = 1,7 tại x = -1
b, Bmin = 3,7 tại x = \(\frac{2}{3}\)
ta có:C=2(x2+7)-(5-2|x|)
C=2x2+14-5+2|x|
C=2x2+9+2|x|=2x2+2|x|+9
Ta có:2x2 >= 0 với mọi x
2|x| >= 0 với mọi x
=>GTNN của C=9
dấu"=" xảy ra<=>2x2=2|x|=0<=>x=0
KL:.....