Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) |x+1|>/0
dấu "=" xảy ra khi x=-1
vậy Min A=1,7 khi x=-1
b)|x-2/3|>/0
dấu"=" xảy ra khi x=2/3
vậy Min A=3/7 khi x=2/3
c) bạn viết đề câu c rõ chút đc ko
a, Amin = 1,7 tại x = -1
b, Bmin = 3,7 tại x = \(\frac{2}{3}\)
a) \(\left|x-7\right|\ge x-7\Rightarrow A\ge x-7+3-x=-4\)
Dấu "=" xảy ra <=> \(x-7\ge0\Leftrightarrow x\ge7\)
b)\(\left|x+7\right|\ge x+7;\left|x+3\right|\ge0;\left|x+1\right|\ge-x-1\Rightarrow B\ge x+7+0-x-1=6\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+7\ge0\\x+3=0\\x+1\le0\end{cases}\Leftrightarrow x=-3}\)
c) \(\left|2-x\right|\ge x-2;\left|5-x\right|\ge5-x\Rightarrow C\ge x-2+5-x=3\)
Dấu = xảy ra \(\Leftrightarrow\hept{\begin{cases}2-x\le0\\5-x\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ge2\\x\le5\end{cases}}\)
Ta có: \(A=4x^2+12x+9-1\)
<=> \(A=\left(2x+3\right)^2-1\)
<=> \(A=\left(2x+3-1\right)\left(2x+3+1\right)\)
<=> \(A=\left(2x+2\right)\left(2x+4\right)\)
<=> \(A=4\left(x+1\right)\left(x+2\right)\ge4.1.2=8\)
Vậy Amin = 8 khi x=0
trần gia bảo bái phục bái phục!
Lời giải
Tự c/m: \(\left(a+b\right)^2=a^2+2ab+b^2\) (phân tích thành (a+b) . (a+b) rồi phá tung cái ngoặc ra)
Ta có: \(A=4\left(x^2+3x+2\right)\) (đặt thừa số chung)
\(=4\left[x^2+2.x.\frac{3}{2}+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+2\right]\)
\(=4\left[\left(x+\frac{3}{2}\right)^2-\frac{1}{4}\right]=4\left(x+\frac{3}{2}\right)^2-1\ge-1\) (do \(\left(x+\frac{3}{2}\right)^2\ge0\))
Dấu "=" xảy ra khi x + 3/2 = 0 tức là x = -3/2
Vậy Min (GTNN) A = -1 khi và chỉ khi x = -3/2
\(\text{a)Để C đạt GTNN}\)
\(\Rightarrow\hept{\begin{cases}\left(x+2\right)^2\\\left(y-\frac{1}{5}\right)^2\end{cases}\ge0}\)
\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2\ge0\)
\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\ge0-10\)
\(\Rightarrow C\ge-10\)
\(\text{Vậy minC=-10 khi x=-2;y= }\frac{1}{5}\)
b)\(\text{Để D đạt GTLN}\)
=>(2x-3)2+5 đạt GTNN
Mà (2x-3)2\(\ge\)5
\(\Rightarrow GTLN\)của \(A=\frac{4}{5}\)khi \(x=\frac{3}{2}\)
Ta có : \(A=\left|x\right|+\left|8-x\right|\ge\left|x+8-x\right|=\left|8\right|=8\)
Dấu "=" xảy ra <=> \(x\left(8-x\right)\ge0\Leftrightarrow0\le x\le8\)
Vậy GTNN của A là 8 tại \(0\le x\le8\)
a ) Vì | x + 1 | ≥ 0 ∀ x ∈ N
Để A = | x + 1 | + 1,7 min <=> x + 1 = 0 => x = - 1
Vậy min A = 1,7 <=> x = - 1
b ) Vì B = | x - 2/3 | ≥ 0 ∀ x ∈ N
Để | x -2/3 | + 3/7 min <=> x - 2/3 = 0 => x = 2/3
Vậy min B = 3/7 <=> x = 2/3