K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 3 2020

Liên hợp thì thật khủng khiếp, tạm thời xử lý bằng L'Hopital:

\(\lim\limits_{x\rightarrow1}\frac{\left(2x-1\right)^{\frac{1}{4}}+\left(x-2\right)^{\frac{1}{5}}}{x-1}=\lim\limits_{x\rightarrow1}\frac{\frac{1}{2}\left(2x-1\right)^{-\frac{3}{4}}+\frac{1}{5}\left(x-2\right)^{-\frac{4}{5}}}{1}=\frac{1}{2}+\frac{1}{5}=\frac{7}{10}\)

AH
Akai Haruma
Giáo viên
3 tháng 4 2022

Lời giải:
\(L=\lim\limits_{x\to 1}\frac{\sqrt{2x-1}(\sqrt[3]{x+7}-2)+2(\sqrt{2x-1}-1)}{x(x-1)}=\lim\limits_{x\to 1}\frac{\sqrt{2x-1}.\frac{1}{\sqrt[3]{(x+7)^2}+2\sqrt[3]{x+7}+4}+4.\frac{1}{\sqrt{2x-1}+1}}{x}=\frac{25}{12}\)

24 tháng 1 2021

a/ L'Hospital:

 \(=\lim\limits_{x\rightarrow2}\dfrac{x-\left(x+2\right)^{\dfrac{1}{2}}}{\left(4x+1\right)^{\dfrac{1}{2}}-3}=\lim\limits_{x\rightarrow2}\dfrac{1-\dfrac{1}{2}\left(x+2\right)^{-\dfrac{1}{2}}}{\dfrac{1}{2}\left(4x+1\right)^{-\dfrac{1}{2}}.4}=\dfrac{1-\dfrac{1}{2}.4^{-\dfrac{1}{2}}}{2.9^{-\dfrac{1}{2}}}=\dfrac{9}{8}\)

b/ L'Hospital:\(=\lim\limits_{x\rightarrow1}\dfrac{\left(2x+7\right)^{\dfrac{1}{2}}+x-4}{x^3-4x^2+3}=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{1}{2}\left(2x+7\right)^{-\dfrac{1}{2}}.2+1}{3x^2-8x}=\dfrac{9^{-\dfrac{1}{2}}+1}{3-8}=-\dfrac{4}{15}\)

15 tháng 3 2020

a) \(\lim\limits_{x\rightarrow0}\frac{\sqrt{1+2x}-1}{2x}=\lim\limits_{x\rightarrow0}\frac{2x}{2x\left(\sqrt{1+2x}+1\right)}=\lim\limits_{x\rightarrow0}\frac{1}{\sqrt{1+2x}+1}=\frac{1}{2}\)

b) \(\lim\limits_{x\rightarrow0}\frac{4x}{\sqrt{9+x}-3}=\lim\limits_{x\rightarrow0}\frac{4x\left(\sqrt{9+x}+3\right)}{x}=\lim\limits_{x\rightarrow0}[4\left(\sqrt{9+x}+3\right)=24\)

c) \(\lim\limits_{x\rightarrow2}\frac{\sqrt{x+7}-3}{x-2}=\lim\limits_{x\rightarrow2}\frac{x-2}{\left(x-2\right)\left(\sqrt{x+7}+3\right)}=\lim\limits_{x\rightarrow2}\frac{1}{\sqrt{x+7}+3}=\frac{1}{6}\)

d) \(\lim\limits_{x\rightarrow1}\frac{3x-2-\sqrt{4x^2-x-2}}{x^2-3x+2}=\lim\limits_{x\rightarrow1}\frac{\left(3x-2\right)^2-\left(4x^2-4x-2\right)}{(x^2-3x+2)\left(3x-2+\sqrt{4x^2-x-2}\right)}=\lim\limits_{x\rightarrow1}\frac{\left(x-1\right)\left(5x-6\right)}{\left(x-1\right)\left(x-2\right)\left(3x-2+\sqrt{4x^2-x-2}\right)}=\frac{1}{2}\\ \\\\ \\ \\ \\ \)

e)\(\lim\limits_{x\rightarrow1}\frac{\sqrt{2x+7}+x-4}{x^3-4x^2+3}=\lim\limits_{x\rightarrow1}\frac{2x+7-\left(x^2-8x+16\right)}{\left(x-1\right)\left(x^2-3x-3\right)\left(\sqrt{2x+7}-x+4\right)}=\lim\limits_{x\rightarrow1}\frac{\left(x-1\right)\left(x-9\right)}{\left(x-1\right)\left(x^2-3x-3\right)\left(\sqrt{2x+7}-x+4\right)}=\lim\limits_{x\rightarrow1}\frac{x-9}{\left(x^2-3x-3\right)\left(\sqrt{2x+7}-x+4\right)}=-8\)

f) \(\lim\limits_{x\rightarrow1}\frac{\sqrt{2x+7}-3}{2-\sqrt{x+3}}=\lim\limits_{x\rightarrow1}\frac{(2x-2)\left(2+\sqrt{x+3}\right)}{\left(1-x\right)\left(\sqrt{2x+7}+3\right)}=\lim\limits_{x\rightarrow1}\frac{-2\left(2+\sqrt{x+3}\right)}{\sqrt{2x+7}+3}=\frac{-4}{3}\)

g) \(\lim\limits_{x\rightarrow0}\frac{\sqrt{x^2+1}-1}{\sqrt{x^2+16}-4}=\lim\limits_{x\rightarrow0}\frac{x^2\left(\sqrt{x^2+16}+4\right)}{x^2\left(\sqrt{x^2+1}+1\right)}=4\)

h)

\(\lim\limits_{x\rightarrow4}\frac{\sqrt{x+5}-\sqrt{2x+1}}{x-4}=\lim\limits_{x\rightarrow4}\frac{\sqrt{x+5}-3}{x-4}+\lim\limits_{x\rightarrow4}\frac{3-\sqrt{2x+1}}{x-4}=\lim\limits_{x\rightarrow4}\frac{1}{\sqrt{x+5}+4}+\lim\limits_{x\rightarrow4}\frac{8-2x}{\left(x-4\right)\left(3+\sqrt{2x+1}\right)}=\frac{1}{7}-\frac{1}{3}=\frac{-4}{21}\)

k) \(\lim\limits_{x\rightarrow0}\frac{\sqrt{x+1}+\sqrt{x+4}-3}{x}=\lim\limits_{x\rightarrow0}\frac{\sqrt{x+1}-1}{x}+\lim\limits_{x\rightarrow0}\frac{\sqrt{x+4}-2}{x}=\lim\limits_{x\rightarrow0}\frac{1}{\sqrt{x+1}+1}+\lim\limits_{x\rightarrow0}\frac{1}{\sqrt{x+4}+2}=\frac{1}{2}+\frac{1}{4}=\frac{3}{4}\)

AH
Akai Haruma
Giáo viên
25 tháng 1 2020

Lời giải:
a)

\(\lim\limits_{x\to-1}\frac{\sqrt[3]{x}+1}{2x^2+5x+3}=\lim\limits_{x\to-1}\frac{x+1}{\left(\sqrt[3]{x^2}-\sqrt[3]{x}+1\right)\left(x+1\right)\left(2x+3\right)}\)

\(\lim\limits_{x\to-1}\frac{1}{\left(\sqrt[3]{x^2}-\sqrt[3]{x}+1\right)\left(2x+3\right)}=\frac{1}{\left(\sqrt[3]{\left(-1\right)^2}-\sqrt[3]{-1}+1\right)\left(2.-1+3\right)}=\frac{1}{3}\)

b)

\(\lim\limits_{x\to1}\frac{\sqrt[3]{x^2}-2\sqrt[3]{x}+1}{\left(x-1\right)^2}=\lim\limits_{x\to1}\frac{\left(\sqrt[3]{x}-1\right)^2}{\left(x-1\right)^2}=\lim\limits_{x\to1}\frac{\left(x-1\right)^2}{\left(\sqrt[3]{x^2}+\sqrt[3]{x}+1\right)^2\left(x-1\right)^2}\)

\(=\lim\limits_{x\to1}\frac{1}{\left(\sqrt[3]{x^2}+\sqrt[3]{x}+1\right)^2}=\frac{1}{\left(1+1+1\right)^2}=\frac{1}{9}\)

c)

\(\lim_{x\to 1}\frac{\sqrt[4]{x}-1}{x^3+x^2-2}=\lim_{x\to 1}\frac{\sqrt[4]{x}-1}{(x-1)(x^2+2x+2)}=\lim_{x\to 1}\frac{x-1}{(\sqrt{x}+1)(\sqrt[4]{x}+1)(x-1)(x^2+2x+2)}\)

\(=\lim_{x\to 1}\frac{1}{(\sqrt{x}+1)(\sqrt[4]{x}+1)(x^2+2x+2)}=\frac{1}{(1+1)(1+1)(1+2.1+2)}=\frac{1}{20}\)

d)

\(\lim_{x\to -2}\frac{\sqrt[3]{2x+12}+x}{x^2+2x}=\lim_{x\to -2}\frac{2x+12+x^3}{(\sqrt[3]{(2x+12)^2}-x\sqrt[3]{2x+12}+x^2).x(x+2)}\)

\(=\lim_{x\to -2}\frac{(x+2)(x^2-2x+6)}{(\sqrt[3]{(2x+12)^2}-x\sqrt[3]{2x+12}+x^2).x(x+2)}=\lim_{x\to -2}\frac{x^2-2x+6}{(\sqrt[3]{(2x+12)^2}-x\sqrt[3]{2x+12}+x^2).x}\)

\(=\frac{-7}{12}\)

AH
Akai Haruma
Giáo viên
7 tháng 1 2020

Lời giải:
a)

\(\lim\limits_{x\to-1}\frac{\sqrt[3]{x}+1}{2x^2+5x+3}=\lim\limits_{x\to-1}\frac{x+1}{\left(\sqrt[3]{x^2}-\sqrt[3]{x}+1\right)\left(x+1\right)\left(2x+3\right)}\)

\(\lim\limits_{x\to-1}\frac{1}{\left(\sqrt[3]{x^2}-\sqrt[3]{x}+1\right)\left(2x+3\right)}=\frac{1}{\left(\sqrt[3]{\left(-1\right)^2}-\sqrt[3]{-1}+1\right)\left(2.-1+3\right)}=\frac{1}{3}\)

b)

\(\lim\limits_{x\to1}\frac{\sqrt[3]{x^2}-2\sqrt[3]{x}+1}{\left(x-1\right)^2}=\lim\limits_{x\to1}\frac{\left(\sqrt[3]{x}-1\right)^2}{\left(x-1\right)^2}=\lim\limits_{x\to1}\frac{\left(x-1\right)^2}{\left(\sqrt[3]{x^2}+\sqrt[3]{x}+1\right)^2\left(x-1\right)^2}\)

\(=\lim\limits_{x\to1}\frac{1}{\left(\sqrt[3]{x^2}+\sqrt[3]{x}+1\right)^2}=\frac{1}{\left(1+1+1\right)^2}=\frac{1}{9}\)

c)

\(\lim_{x\to 1}\frac{\sqrt[4]{x}-1}{x^3+x^2-2}=\lim_{x\to 1}\frac{\sqrt[4]{x}-1}{(x-1)(x^2+2x+2)}=\lim_{x\to 1}\frac{x-1}{(\sqrt{x}+1)(\sqrt[4]{x}+1)(x-1)(x^2+2x+2)}\)

\(=\lim_{x\to 1}\frac{1}{(\sqrt{x}+1)(\sqrt[4]{x}+1)(x^2+2x+2)}=\frac{1}{(1+1)(1+1)(1+2.1+2)}=\frac{1}{20}\)

d)

\(\lim_{x\to -2}\frac{\sqrt[3]{2x+12}+x}{x^2+2x}=\lim_{x\to -2}\frac{2x+12+x^3}{(\sqrt[3]{(2x+12)^2}-x\sqrt[3]{2x+12}+x^2).x(x+2)}\)

\(=\lim_{x\to -2}\frac{(x+2)(x^2-2x+6)}{(\sqrt[3]{(2x+12)^2}-x\sqrt[3]{2x+12}+x^2).x(x+2)}=\lim_{x\to -2}\frac{x^2-2x+6}{(\sqrt[3]{(2x+12)^2}-x\sqrt[3]{2x+12}+x^2).x}\)

\(=\frac{-7}{12}\)

9 tháng 2 2021

\(=\lim\limits_{x\rightarrow1}\dfrac{2x-\dfrac{1}{2}.x^{-\dfrac{1}{2}}}{\dfrac{1}{2}.x^{-\dfrac{1}{2}}}=\dfrac{2-\dfrac{1}{2}}{\dfrac{1}{2}}=3\)

NV
16 tháng 3 2020

\(a=\lim\limits_{x\rightarrow0}\frac{x^2}{x\left(\sqrt{1+x^2}+1\right)}=\lim\limits_{x\rightarrow0}\frac{x}{\sqrt{1+x^2}+1}=\frac{0}{2}=0\)

\(b=\lim\limits_{x\rightarrow1}\frac{\sqrt[3]{x+7}-2+2-\sqrt{5-x^2}}{x-1}=\lim\limits_{x\rightarrow1}\frac{\frac{x-1}{\sqrt[3]{\left(x+7\right)^2}+2\sqrt[3]{x+7}+4}+\frac{\left(x-1\right)\left(x+1\right)}{2+\sqrt{5-x^2}}}{x-1}\)

\(=\lim\limits_{x\rightarrow1}\left(\frac{1}{\sqrt[3]{\left(x+7\right)^2}+2\sqrt[3]{x+7}+4}+\frac{x+1}{2+\sqrt{5-x^2}}\right)=\frac{1}{12}+\frac{1}{2}=\frac{7}{12}\)

\(c=\lim\limits_{x\rightarrow0}\frac{2x}{x\left(\sqrt[3]{\left(1+x\right)^2}+\sqrt[3]{\left(1+x\right)\left(1-x\right)}+\sqrt[3]{\left(1-x\right)^2}\right)}=\lim\limits_{x\rightarrow0}\frac{2}{\sqrt[3]{\left(1+x\right)^2}+\sqrt[3]{\left(1+x\right)\left(1-x\right)}+\sqrt[3]{\left(1-x\right)^2}}=\frac{2}{3}\)

\(d=\frac{\sqrt[3]{6}}{0}=+\infty\)

10 tháng 11 2023

a: \(\lim\limits_{x\rightarrow1}\dfrac{x^2-1}{\sqrt{3x+1}-2}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(x+1\right)}{\dfrac{3x+1-4}{\sqrt{3x+1}+2}}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(x+1\right)\cdot\left(\sqrt{3x+1}+2\right)}{3\left(x-1\right)}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\left(x+1\right)\left(\sqrt{3x+1}+2\right)}{3}\)

\(=\dfrac{\left(1+1\right)\left(\sqrt{3+1}+2\right)}{2}=\dfrac{2\cdot4}{3}=\dfrac{8}{3}\)

b: \(\lim\limits_{x\rightarrow2}\dfrac{x^2-2x}{\sqrt{x+2}-2}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{x\left(x-2\right)}{\dfrac{x+2-4}{\sqrt{x+2}+2}}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{x\left(x-2\right)\cdot\left(\sqrt{x+2}+2\right)}{x-2}\)

\(=\lim\limits_{x\rightarrow2}x\left(\sqrt{x+2}+2\right)\)

\(=2\cdot\left(\sqrt{2+2}+2\right)\)

\(=2\cdot4=8\)

NV
15 tháng 3 2020

\(a=\lim\limits_{x\rightarrow a}\frac{\left(\sqrt{x}-\sqrt{a}\right)\left(x+\sqrt{ax}+a\right)}{\sqrt{x}-\sqrt{a}}=\lim\limits_{x\rightarrow a}\left(x+\sqrt{ax}+a\right)=3a\)

\(b=\lim\limits_{x\rightarrow1}\frac{x^{\frac{1}{n}}-1}{x^{\frac{1}{m}}-1}=\lim\limits_{x\rightarrow1}\frac{\frac{1}{n}x^{\frac{1-n}{n}}}{\frac{1}{m}x^{\frac{1-m}{m}}}=\frac{\frac{1}{n}}{\frac{1}{m}}=\frac{m}{n}\)

Ta có:

\(\lim\limits_{x\rightarrow1}\frac{1-\sqrt[n]{x}}{1-x}=\lim\limits_{x\rightarrow1}\frac{1-x^{\frac{1}{n}}}{1-x}=\lim\limits_{x\rightarrow1}\frac{-\frac{1}{n}x^{\frac{1-n}{n}}}{-1}=\frac{1}{n}\)

\(\Rightarrow c=\lim\limits_{x\rightarrow1}\frac{\left(1-\sqrt{x}\right)}{1-x}.\frac{\left(1-\sqrt[3]{x}\right)}{\left(1-x\right)}.\frac{\left(1-\sqrt[4]{x}\right)}{\left(1-x\right)}.\frac{\left(1-\sqrt[5]{x}\right)}{\left(1-x\right)}=\frac{1}{2}.\frac{1}{3}.\frac{1}{4}.\frac{1}{5}=\frac{1}{120}\)

\(d=\lim\limits_{x\rightarrow+\infty}\frac{\sqrt{x+\sqrt{x}}}{\sqrt{x+\sqrt{x+\sqrt{x}}}+\sqrt{x}}=\lim\limits_{x\rightarrow+\infty}\frac{\sqrt{1+\frac{1}{\sqrt{x}}}}{\sqrt{1+\sqrt{\frac{1}{x}+\frac{1}{x\sqrt{x}}}}+1}=\frac{1}{2}\)

NV
15 tháng 3 2020

\(e=\lim\limits_{x\rightarrow0}\frac{\sqrt{1+x}-1+1-\sqrt[3]{1+x}}{x}=\lim\limits_{x\rightarrow0}\frac{\frac{x}{\sqrt{1+x}+1}+\frac{x}{1+\sqrt[3]{1+x}+\sqrt[3]{\left(1+x\right)^2}}}{x}\)

\(=\lim\limits_{x\rightarrow0}\left(\frac{1}{\sqrt{1+x}+1}+\frac{1}{1+\sqrt[3]{1+x}+\sqrt[3]{\left(1+x\right)^2}}\right)=\frac{1}{2}+\frac{1}{3}=\frac{5}{6}\)

\(f=\lim\limits_{x\rightarrow2}\frac{\sqrt[3]{8x+11}-3+3-\sqrt{x+7}}{\left(x-1\right)\left(x-2\right)}=\lim\limits_{x\rightarrow2}\frac{\frac{8\left(x-2\right)}{\sqrt[3]{\left(8x+11\right)^2}+3\sqrt[3]{8x+11}+9}-\frac{x-2}{3+\sqrt{x+7}}}{\left(x-1\right)\left(x-2\right)}\)

\(=\lim\limits_{x\rightarrow2}\frac{\frac{8}{\sqrt[3]{\left(8x+11\right)^2}+3\sqrt[3]{8x+11}+9}-\frac{1}{3+\sqrt{x+7}}}{x-1}=\frac{8}{27}-\frac{1}{6}=\frac{7}{54}\)

\(g=\lim\limits_{x\rightarrow1}\frac{\sqrt[3]{3x-2}-1+1-\sqrt{2x-1}}{\left(x-1\right)\left(x^2+x+1\right)}=\lim\limits_{x\rightarrow1}\frac{\frac{3\left(x-1\right)}{\sqrt[3]{\left(3x-2\right)^2}+\sqrt[3]{3x-2}+1}-\frac{2\left(x-1\right)}{1+\sqrt{2x-1}}}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\lim\limits_{x\rightarrow1}\frac{\frac{3}{\sqrt[3]{\left(3x-2\right)^2}+\sqrt[3]{3x-2}+1}-\frac{2}{1+\sqrt{2x-1}}}{x^2+x+1}=0\)

\(h=\lim\limits_{x\rightarrow1}\frac{\sqrt[3]{x+9}+\sqrt[3]{2x-6}}{x^3+1}=\frac{\sqrt[3]{10}-\sqrt[3]{4}}{2}\)

6 tháng 12 2023

loading...  loading...