Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: 8=7+1=x+1
\(B=x^{15}-8x^{14}+8x^{13}-...-8x^2+8x-5\)
\(\Rightarrow B=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-...-\left(x+1\right)x^2+\left(x+1\right)x-5\)
\(\Rightarrow B=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-...-x^3-x^2+x^2+x-5\)
\(\Rightarrow B=x-5\)
\(\Rightarrow B=7-5\)
\(\Rightarrow B=2\)
B = x15 - 8x14 + 8x13 - 8x2 + ... - 8x2 + 8x - 5
B = x^15 - 7x^14 -x^14+7x^13+x^13-7x^12-...-x^2+7x+x-5
B = x^14(x-7) - x^14(x-7) +...+x^2(x-7)-x(x-7)+x-5
B = 7-5=2
Tham khảo cách này nhoá~
`B = x^15 - 8x^14 + 8x^13 - 8x^122 + ... - 8x^2 + 8x - 5`
`B = x^15 - 7x^14 -x^14+7x^13+x^13-7x^12-...-x^2+7x+x-5`
`B = x^14(x-7) - x^14(x-7) +...+x^2(x-7)-x(x-7)+x-5`
`B = 7-5=2`
B = x15 - 8x14 + 8x13 - 8x2 + ... - 8x2 + 8x - 5
B = x^15 - 7x^14 -x^14+7x^13+x^13-7x^12-...-x^2+7x+x-5
B = x^14(x-7) - x^14(x-7) +...+x^2(x-7)-x(x-7)+x-5
B = 7-5=2
`B = x^15 - 7x^14 - x^14 + 7x^13 + x^13 - .... +7x + x - 7 + 2`
`<=> x^14(x-7) - x^13(x-7) + ... + x - 7 + 2`
`<=> (x^14-x^13 + ... + 1)(x-7) + 2`
Thay `x = 7 <=> (x^14 - x^13 + ... + 1) xx 0 + 2 = 2`.
x=7 nên x+1=8
\(B=x^{15}-x^{14}\left(x+1\right)+x^{13}\left(x+1\right)-x^{12}\left(x+1\right)+...-x^2\left(x+1\right)+x\left(x+1\right)-5\)
\(=x^{15}-x^{15}-x^{14}+x^{14}-x^{13}+x^{13}-...-x^3-x^2+x^2+x+5\)
=x+5
=7+5
=12
x=4
=>x+1=5
A=(x+1)x^5 -(x+1)x^4+(x+1)x^3-(x+1)x^2+(x+1)x-1
=x^6+x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2-x+1
=x^6-x-1
=4^6-4-1
=4091
\(a,A=5\cdot4^5-5\cdot4^4+5\cdot4^3-5\cdot4^2+5\cdot4+1\\ A=4^4\left(20-5\right)+4^2\left(20-5\right)+\left(20-5\right)\\ A=15\left(4^4+4^2+1\right)=15\cdot273=4095\)
\(b,x=7\Leftrightarrow x+1=8\\ \Leftrightarrow B=x^{2006}-\left(x+1\right)x^{2005}+\left(x+1\right)x^{2004}-...+\left(x+1\right)x^2-\left(x+1\right)x-5\\ B=x^{2006}-x^{2006}-x^{2005}+x^{2005}+x^{2004}-...+x^3+x^2-x^2-x-5\\ B=-x-5=-12\)
x=7=>x+1=8
B=x15-8x14+8x13-8x12+....-8x2+8x-5
=x15-(x+1)x14+(x+1)x13-(x+1)x12+...-(x+1)x2+(x+1)x-5
=x15-x15-x14+x14+x13-x13+x12+...-x3-x2+x2+x-5
=x-5
=7-5
=2
Vậy B=2
\(B=x^{15}-8x^{14}+8x^{13}-8x^{12}+...+8x-5\)
\(=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...+\left(x+1\right)x-x+2\)
\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}-x^{12}+...+x^2+x-x+2\)
\(=2\)