K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2018

\(A=\frac{2x^2+8xy+2y^2}{x^2+2xy+y^2}=\frac{2\left(x+y\right)^2+4xy}{\left(x+y\right)^2}=\frac{2.2012^2+4xy}{2012^2}\)

\(\le\frac{2.2012^2+4.\frac{\left(x+y\right)^2}{4}}{2012^2}=\frac{2.2012^2+2012^2}{2012^2}=\frac{3.2012^2}{2012^2}=3\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=1006\)

18 tháng 2 2018

anh hùng giải thích cho em cái chỗ  \(\frac{4.\left(x+y\right)^2}{4}\) với

17 tháng 4 2020

toán lớp 7 nha mk ghi nhầm

21 tháng 6 2023

a)

Ta có: $2x^2+2y^2=5xy \Leftrightarrow 2\frac{x}{y}+\frac{y}{x}=5$

Đặt $t=\frac{x}{y}$, ta có $2t+\frac{1}{t}=5 \Rightarrow 2t^2-5t+1=0$

Giải phương trình trên ta được $t_1=\frac{1}{2}$ và $t_2=1$. Vì $0<x<y$ nên $t>0$, do đó $t=\frac{x}{y}=\frac{1}{2}$.

Từ đó suy ra $x=\frac{y}{2}$ và thay vào biểu thức $E$ ta được:

$E=\frac{x^2+y^2}{x^2-y^2}=\frac{\frac{y^2}{4}+y^2}{\frac{y^2}{4}-y^2}=-\frac{5}{3}$

Vậy kết quả là $E=-\frac{5}{3}$.

21 tháng 6 2023
2 tháng 9 2017

ta có \(x^2-2y^2-xy=0\)

  <=> \(\left(x^2-y^2\right)-\left(y^2+xy\right)=0\)

   <=> \(\left(x-y\right)\left(x+y\right)-y\left(x+y\right)=0\)

  <=> \(\left(x+y\right)\left(x-2y\right)=0\)

   <=> x-2y=0( vì x+y khác 0)

  <=> x=2y

thay vào đề bài ta có 

\(Q=\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)

2 tháng 9 2017

Ta có : \(x^2-2y^2=xy\Leftrightarrow x^2-xy-2y^2=0\Leftrightarrow x^2+xy-2xy-2y^2=0\)

\(\Leftrightarrow x\left(x+y\right)-2y\left(x+y\right)=0\Leftrightarrow\left(x-2y\right)\left(x+y\right)=0\)

Mà \(x+y\text{≠}0\) nên \(x-2y=0\Rightarrow x=2y\)

\(\Rightarrow Q=\frac{x-y}{x+y}=\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)