K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2016

\(y=\frac{x^2+x+1}{x^2-x+1}\)

0./ ĐK: \(x^2-x+1>0\forall x\)nên y được xác định với mọi x thuộc R

1./ x = 0 thì y = 1

2./ x khác 0 thì: chia cả tử và mẫu của y cho x2

\(y=\frac{x+1+\frac{1}{x}}{x-1+\frac{1}{x}}=\frac{x+\frac{1}{x}-1+2}{x+\frac{1}{x}-1}=1+\frac{2}{x+\frac{1}{x}-1}\)

  • Với x > 0 Áp dụng BĐT Cô sy cho 2 số >0: \(x+\frac{1}{x}\ge2\forall x>0\Rightarrow x+\frac{1}{x}-1\ge1\Rightarrow\frac{2}{x+\frac{1}{x}-1}\le2\Rightarrow y\le3\)=> GTLN của y = 3 khi \(x=\frac{1}{x}>0\Rightarrow x=1\)
  • Với x < 0 Áp dụng BĐT Cô sy cho 2 số >0

\(-x+\left(-\frac{1}{x}\right)\ge2\forall x>0\Rightarrow x+\frac{1}{x}\le-2\Rightarrow x+\frac{1}{x}-1\le-3\Rightarrow\frac{2}{x+\frac{1}{x}-1}\ge-\frac{2}{3}\Rightarrow y\ge\frac{1}{3}\)

=> GTNN của y = 1/3 khi \(-x=-\frac{1}{x}>0\Rightarrow x=\frac{1}{x}< 0\Rightarrow x=-1\)

KL: GTLN của y = 3 khi x = 1

GTNN của y = 1/3 khi x = -1.

15 tháng 7 2016

Mình làm cách khác nhé  ^^

1. Tìm Min :

Ta có : \(y=\frac{x^2+x+1}{x^2-x+1}=\frac{3\left(x^2+x+1\right)}{3\left(x^2-x+1\right)}=\frac{2\left(x^2+2x+1\right)+\left(x^2-x+1\right)}{3\left(x^2-x+1\right)}=\frac{2\left(x+1\right)^2}{3\left(x^2-x+1\right)}+\frac{1}{3}\ge\frac{1}{3}\)

Dấu "=" xảy ra khi và chỉ khi x = -1

Vậy Min y = 1/3 <=> x = -1

2. Tìm Max :

Ta biểu diễn : \(y=\frac{x^2+x+1}{x^2-x+1}=\frac{-2\left(x^2-2x+1\right)+3\left(x^2-x+1\right)}{x^2-x+1}=\frac{-2\left(x-1\right)^2}{x^2-x+1}+3\le3\)

Dấu "=" xảy ra khi và chỉ khi x = 1

Vậy Max y = 3 khi và chỉ khi x = 1

25 tháng 8 2021

a) \(A=1-8x-x^2=-\left(x^2+8x+16\right)+17=-\left(x-4\right)^2+17\le17\)

\(ĐTXR\Leftrightarrow x=4\)

b) \(B=5-2x+x^2=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\)

\(ĐTXR\Leftrightarrow x=1\)

c) \(C=x^2+4y^2-6x+8y-2021=\left(x^2-6y+9\right)+\left(4y^2+8y+4\right)-2034=\left(x-3\right)^2+\left(2y+2\right)^2-2034\ge-2034\)

\(ĐTXR\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\)

a: Ta có: \(A=-x^2-8x+1\)

\(=-\left(x^2+8x-1\right)\)

\(=-\left(x^2+8x+16-17\right)\)

\(=-\left(x+4\right)^2+17\le17\forall x\)

Dấu '=' xảy ra khi x=-4

b: Ta có: \(x^2-2x+5\)

\(=x^2-2x+1+4\)

\(=\left(x-1\right)^2+4\ge4\forall x\)

Dấu '=' xảy ra khi x=1

10 tháng 5 2022

Bài 1: -Sửa đề: a,b,c>0

-Ta c/m: \(a+b+c\ge\sqrt{3\left(ab+bc+ca\right)}\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge3\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng)

-Vậy BĐT đã được c/m.

-Quay lại bài toán:

\(\sqrt{3\left(ab+bc+ca\right)}\le a+b+c=1\)

\(\Rightarrow3\left(ab+bc+ca\right)\le1\)

\(\Rightarrow ab+bc+ca\le\dfrac{1}{3}< \dfrac{1}{2}\left(đpcm\right)\)

10 tháng 5 2022

Bài 2:

-Ta c/m BĐT \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) với A,B là các phân thức.

\(\Leftrightarrow\left(\left|A\right|+\left|B\right|\right)^2\ge\left(\left|A+B\right|\right)^2\)

\(\Leftrightarrow A^2+2\left|A\right|\left|B\right|+B^2\ge A^2+2AB+B^2\)

\(\Leftrightarrow\left|A\right|\left|B\right|\ge AB\) (luôn đúng)

-Vậy BĐT đã được c/m.

-Dấu "=" xảy ra khi \(\left[{}\begin{matrix}A,B\ge0\\A,B\le0\end{matrix}\right.\)

-Quay lại bài toán:

\(P=\left|x-2\right|+\left|x-3\right|=\left|x-2\right|+\left|3-x\right|\ge\left|x-2+3-x\right|=\left|1\right|=1\)

\(P=1\Leftrightarrow\left[{}\begin{matrix}\left(x-2\right)\left(3-x\right)\ge0\\\left(x-2\right)\left(3-x\right)\le0\end{matrix}\right.\Leftrightarrow2\le x\le3\)

-Vậy \(P_{min}=1\)

24 tháng 6 2018

1) \(A=\frac{2x+1}{x^2+2}\)

\(=\frac{\frac{1}{2}\left(x^2+4x+4\right)-\frac{1}{2}\left(x^2+2\right)}{x^2+2}\)

\(=\frac{\left(x+2\right)^2}{2\left(x^2+2\right)}-\frac{1}{2}\ge-\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x+2=0\Leftrightarrow x=-2\)

Vậy GTNN của \(A=-\frac{1}{2}\)khi x = -2 

NV
18 tháng 7 2021

\(A=\dfrac{3\left(x^2+x+1\right)-2x^2-4x-2}{x^2+x+1}=3-\dfrac{2\left(x+1\right)^2}{x^2+x+1}\le3\)

\(A_{max}=3\) khi \(x=-1\)

\(A=\dfrac{3x^2-3x+3}{3\left(x^2+x+1\right)}=\dfrac{x^2+x+1+2x^2-4x+2}{3\left(x^2+x+1\right)}=\dfrac{1}{3}+\dfrac{2\left(x-1\right)^2}{3\left(x^2+x+1\right)}\ge\dfrac{1}{3}\)

\(A_{min}=\dfrac{1}{3}\) khi \(x=-1\)

25 tháng 7 2018

Ai giúp mik vs

25 tháng 7 2018

Huhu ai giúp vs

26 tháng 10 2016

1) \(x^2-4x+5=x^2-4x+2^2+1=\left(x^2-4x+2^2\right)+1=\left(x-2\right)^2+1\)

Ta có : (x-2)2 >=0

=> (x-2)2+1>=1

Min A= 1 khi x=2

2) \(-x^2-2x+5=-\left(x^2+2x+1^2\right)+6=-\left(x+1\right)^2+6\)

(x+1)2>=0

=> -(x+1)2<=0

=> A<= 6

Max A = 6 khi x=-1

26 tháng 10 2016

C1, x2 - 4x + 5

= ( x2 - 4x + 4 ) + 1

= ( x - 2 )2 + 1

=> (x -2)^2 + 1 lớn hơn hoặc bằng 1

=> x = 2

C2, -x2 - 2x + 5

= - (x2 - 2x - 1) - 4

= - (x - 1 ) 2 - 4

=> - (x - 1 ) 2 - 4 nhỏ hơn hoặc bằng 4

=> x = 1

C2 mình nghĩ vậy thôi chứ k chắc đâu

30 tháng 6 2021

\(1.\)

\(-17-\left(x-3\right)^2\)

Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)

\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)

\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)

Dấu '' = '' xảy ra khi: 

\(\left(x-3\right)^2=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

Vậy \(Max=-17\)khi \(x=3\)

30 tháng 6 2021

\(2.\)

\(A=x\left(x+1\right)+\frac{3}{2}\)

\(A=x^2+x+\frac{3}{2}\)

\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)