Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=0,5-\left|x-3,5\right|\le0,5\\ A_{max}=0,5\Leftrightarrow x-3,5=0\Leftrightarrow x=3,5\\ B=-\left|1,4-x\right|2=-2\left|1,4-x\right|\le0\\ B_{min}=0\Leftrightarrow1,4-x=0\Leftrightarrow x=1,4\)
Ta có : |x-2017|+|x+2018|=|2017-x|+|x+2018|>hoặc= 2017-x+x+2018=4035
Dấu bằng xảy ra khi và chỉ khi:
2017-x>hoặc=0 và x+2018>hoặc=0 khi và chỉ khi
x<hoặc=2017 và x>hoặc=-2018 khi va chi khi -2018<hoặc=x<hoặc=2017
Vậy Min Q = 4035 khi va chỉ khi -2018<hoặc=x<hoặc=2017
\(a.A=\left(x-2\right)^2+\left(y+1\right)^2+1\ge1\forall x;y\) . " = " \(\Leftrightarrow x=2;y=-1\)
b.\(B=7-\left(x+3\right)^2\le7\forall x\) " = " \(\Leftrightarrow x=-3\)
c.\(C=\left|2x-3\right|-13\ge-13\forall x\) " = " \(\Leftrightarrow x=\dfrac{3}{2}\)
d.\(D=11-\left|2x-13\right|\le11\forall x\) " = " \(\Leftrightarrow x=\dfrac{13}{2}\)
\(A=\frac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}=\frac{\left|x-2016\right|+2018-1}{\left|x-2016\right|+2018}=1-\frac{1}{\left|x-2016\right|+2018}\)
để A nhỏ nhất => \(\frac{1}{\left|x-2016\right|+2018}\)lớn nhất => |x-2016|+2018 nhỏ nhất
\(\left|x-2016\right|\ge0\Rightarrow\left|x-2016\right|+2018\ge2018\)
dấu = xảy ra khi |x-2016|=0
=> x=2016
Vậy Min A=\(\frac{2017}{2018}\)khi x=2016
ps: sai sót bỏ qua
\(A=\left|x-2018\right|-\left|x-2017\right|\le\left|x-2018-x+2017\right|=\left|-1\right|=1\)
Dấu "=" xảy ra <=> (x-2018)(x-2017) > 0
<=> \(\left[{}\begin{matrix}x>2018\\x< 2017\end{matrix}\right.\)
Vậy MaxA = 1 <=> \(\left[{}\begin{matrix}x>2018\\x< 2017\end{matrix}\right.\)
A = | x − 2018 | − | x − 2017 | ≤ | x − 2018 − x + 2017 | = | − 1 | = 1 Dấu "=" xảy ra <=> (x-2018)(x-2017) > 0 <=> [ x > 2018 x < 2017 Vậy MaxA = 1 <=> [ x > 2018 x < 2017
Đặt M = |x + 2016| + x + 2017
Có: |x + 2016| >= -(x + 2016) = -x - 2016 với mọi x
M = |x + 2016| + x + 2017 >= -x- 2016 + x + 2017
M >= 1
Dấu "=" xảy ra khi x + 2016 <= 0
=> x <= -2016
Vậy...
a,Làm đó rồi.GTLN của A là 2017 đạt được khi x=2
b,B\(=-2-\left|3x+2016\right|\le-2\)
Nên GTLN của B là:-2 đạt được khi \(x=-\frac{2016}{3}\)
GTLN(A)=2017 khi x=2016
\(Do\)\(2\sqrt{x-2016}\)luôn \(\ge\)0
nên A=\(2017-\) \(2\sqrt{x-2016}\)=\(-2\sqrt{x-2016}\)\(+2017\)\(\le2017\)
Dấu bằng xảy ra \(\Leftrightarrow\)x=2016