K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2021

\(y^3-\frac{1}{8}=0\Leftrightarrow y^3-\left(\frac{1}{2}\right)^3=0\)

\(\Leftrightarrow\left(y-\frac{1}{2}\right)\left(y^2+\frac{1}{2}y+\frac{1}{4}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}y-\frac{1}{2}=0\\y^2+\frac{1}{2}y+\frac{1}{4}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=\frac{1}{2}\\y^2+2.\frac{1}{4}y+\frac{1}{16}+\frac{3}{16}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=\frac{1}{2}\\\left(y+\frac{1}{4}\right)^2+\frac{3}{16}=0\left(vôlí\right)\end{cases}}\)

Vậy \(y=\frac{1}{2}\)

15 tháng 5 2017

15 tháng 11 2021

A∈∅

16 tháng 9 2018

12 tháng 10 2015

ta có : (x-y)2=16

x2-2xy+y2=16

x2+y2=5.2+16

x2+2xy+y2-2xy=26

(x+y)2-2.5=26

(x+y)2-10=26

(x+y)2=26+10=36

suy ra x+y=6

          x+y= -6

ta có nếu: x-y=4=>y=x -4

=>x+y= -6

<=>x+x -4= -6

2x= -2=>x= -1

nếu x+y=6

<=>x+x -4=6

2x=10

=> x=5

mà x<0 => x+y=-6

 

24 tháng 8 2017

HD:

          Dễ thấy  b = 1, d = 2, e = 4 đặt y = x2 – 2 suy ra y2 = x4 – 4x2 + 4

Biến đổi  P(x) = x4 – 4x2 + 4 – x3 – 6x2 + 2x

                               = (x2 – 2)2 – x(x2 – 2) – 6x2

          Từ đó  Q(y) = y2 – xy – 6x2

          Tìm m, n sao cho  m.n = - 6x2 và m + n = - x  chọn m = 2x, n = -3x

          Ta có:  Q(y) = y2 + 2xy – 3xy – 6x2

                             = y(y + 2x) – 3x(y + 2x)

                             = (y + 2x)(y – 3x)

          Do đó:  P(x) = (x2 + 2x – 2)(x2 – 3x – 2).

24 tháng 8 2017

a/ tìm GT của x+y biết x-y=2; x.y=99 và y<0
Vì x-y=2 nên  
\(\Leftrightarrow\)  
\(\Leftrightarrow\)  
\(\Leftrightarrow\)  
\(\Leftrightarrow\)  
\(\Leftrightarrow\) x+y=20 hoặc x+y=-20
mà y<0 nên x+y=20

Bạn tham khảo bài này nha

Link:https://olm.vn/hoi-dap/detail/266831819020.html

Chúc bạn học tốt

8 tháng 4 2016

\(a.\)

Phân tích biển đổi thành nhân tử kết hợp với chuyển vế để quy về hẳng đẳng thức, khi đó, ta tính được  \(a,b\)

Thật vậy, ta có:

\(a^2-2a+6b+b^2=-10\)

\(\Leftrightarrow\)  \(a^2-2a+6b+b^2+10=0\)

\(\Leftrightarrow\)  \(\left(a^2-2a+1\right)+\left(b^2+6b+9\right)=0\)

\(\Leftrightarrow\)  \(\left(a-1\right)^2+\left(b+3\right)^2=0\)   \(\left(1\right)\)

Vì  \(\left(a-1\right)^2\ge0;\)  \(\left(b+3\right)^2\ge0\)  với mọi  \(a,b\)

nên để thỏa mãn đẳng thức \(\left(1\right)\)  thì phải xảy ra đồng thời  \(\left(a-1\right)^2=0\)  và  \(\left(b+3\right)^2=0\)

\(\Leftrightarrow\)  \(a-1=0\)  và  \(b+3=0\)  \(\Leftrightarrow\)  \(a=1\)  và  \(b=-3\)

\(b.\)  Cộng  \(1\) vào mỗi phân thức của biểu thức  \(A\), khi đó, ta có:

\(A+3=\left(\frac{x+y}{z}+1\right)+\left(\frac{x+z}{y}+1\right)+\left(\frac{y+z}{x}+1\right)=\frac{x+y+z}{z}+\frac{x+y+z}{y}+\frac{x+y+z}{x}\)

\(A+3=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=0\)  (do  \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\))

Vậy,  \(A=-3\)

9 tháng 4 2016

Viết rõ hơn được không bạn

AH
Akai Haruma
Giáo viên
16 tháng 12 2021

Bài 1:

$2xy=(x+y)^2-(x^2+y^2)=4^2-10=6\Rightarrow xy=3$ 

$M=x^6+y^6=(x^3+y^3)^2-2x^3y^3$

$=[(x+y)^3-3xy(x+y)]^2-2(xy)^3=(4^3-3.3.4)^2-2.3^3=730$

 

AH
Akai Haruma
Giáo viên
16 tháng 12 2021

Bài 2:
$8x^3-32y-32x^2y+8x=0$

$\Leftrightarrow (8x^3+8x)-(32y+32x^2y)=0$

$\Leftrightarrow 8x(x^2+1)-32y(1+x^2)=0$

$\Leftrightarrow (8x-32y)(x^2+1)=0$
$\Rightarrow 8x-32y=0$ (do $x^2+1>0$ với mọi $x$)

$\Leftrightarrow x=4y$

Khi đó:

$M=\frac{3.4y+2y}{3.4y-2y}=\frac{14y}{10y}=\frac{14}{10}=\frac{7}{5}$