Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) A = M + N = ( 2x2y - xy2 + 3x - 2y ) + ( 2xy2 - 2x2y - 5x + 2y )
= 2x2y - xy2 + 3x - 2y + 2xy2 - 2x2y - 5x + 2y
= ( 2x2y - 2x2y ) + ( -xy2 + 2xy2 ) + ( 3x - 5x ) + ( - 2y + 2y )
= 0 + ( -1 +2 ) xy2 + ( 3 - 5 )x + 0
= xy2 - 2x
Vậy A = M + N = xy2 - 2x
B = N - M = 2xy2 - 2x2y - 5x + 2y - ( 2x2y - xy2 + 3x - 2y )
= 2xy2 - 2x2y - 5x + 2y - 2x2y + xy2 - 3x + 2y
= ( 2xy2 + xy2 ) + ( -2x2y - 2x2y ) + ( - 5x - 3x ) + ( 2y + 2y )
= ( 2 + 1 )xy2 + ( -2 - 2 )x2y + ( - 5 - 3 )x + ( 2 + 2 )y
= 3xy2 - 4x2y - 8x + 4y
Vậy B = 3xy2 - 4x2y - 8x + 4y
\(M=x^3+x^2y-2x^2-xy-y^2+3y+x+2017\)
\(\Rightarrow M=\left(x^3+x^2y-2x^2\right)-xy-y^2+2y+y+x-2+2019\)
\(\Rightarrow M=\left(x^3+x^2y-2x^2\right)-\left(xy+y^2-2y\right)+\left(y+x-2\right)+2019\)
\(\Rightarrow M=x^2\left(x+y-2\right)-y\left(x+y-2\right)+\left(x+y-2\right)+2019\)
\(\Rightarrow M=\left(x^2-y+1\right)\left(x+y-2\right)+2019\)
\(\Rightarrow M=\left(x^2-y+1\right).0+2019\)
\(\Rightarrow M=0+2019\)
\(\Rightarrow M=2019\)
#)Giải :
\(B=x^3-2x^2-xy^2+2xy+2x+2y-2\)
\(=2\left(x+y-1\right)+x\left(x^2-y^2\right)-2x\left(x-y\right)\)
\(=2+x\left(x+y\right)\left(x-y\right)-2x\left(x-y\right)\)
\(=2+\left(x^2+xy-2x\right)\left(x-y\right)\)
\(=2+x\left(x+y-2\right)\left(x-y\right)\)
Thay x + y - 2 = 0 vào biểu thức :
\(=2+x.0.\left(x-y\right)=2\)
Cho tam giác ABC vuông tại A; AB<AC. Trên cạnh BC lấy điểm D sao cho BD=BA. Kẻ AH vuông góc với BC; DK vuông góc với AC. CM: AB+AC < BC+AK
Bài này đúng đề nhé chị Quản Lý
Ta có : \(x+y-2=0\)
\(\Rightarrow x+y=2\)
\(E=x^3+x^2y-2x^2-xy^2+2xy+2x+2y-2-x^2y\)
\(E=x^3+x^2y-2x^2-x^2y-xy^2+2xy+2x+2y-2\)
\(E=x^2\left(x+y-2\right)-xy\left(x+y\right)+2xy+2\left(x+y\right)-2\)
\(E=x^2.0-2xy+2xy+2.2-2\)
\(E=0+0+4-2\)
\(E=2\)
Vậy \(E=2\)
M = x3 + x2y - 2x2 - xy - y2 + 3y + x + 2017
M = (x3 + x2y - 2x2) - (xy + y2 - 2y) + (x + y - 2) + 2019
M = x2. (x + y - 2) - y(x + y - 2) + (x + y - 2) + 2019 = 2019
\(M = x^3 + x^2y - 2x^2 - xy - y^2 + 3y + x + 2017.\)
\(M=(x^3+x^2y-2x^2)-(xy-y^2+2y)+(x+y-2)+2019\)
\(M=x^2.(x+y-2)-y.(x-y+2)+(x+y-2)+2019\)
\(M=x^2.0-y.0+0+2019\)
\(M=0-0+0+2019\)
\(M=2019\)