K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2020

đổi ẩn 

\(\left(a;b;c\right)=\left(\frac{1}{x};\frac{1}{y};z\right)\)\(\Rightarrow\)\(x+y+z=3\)

\(P=\Sigma\frac{1}{\sqrt{xy+x+y}}\ge\Sigma\frac{2\sqrt{3}}{xy+x+y+3}\ge\frac{18\sqrt{3}}{\frac{\left(x+y+z\right)^2}{3}+2\left(x+y+z\right)+9}=\sqrt{3}\)

dấuu "=" xảy ra khi \(a=b=c=1\)

29 tháng 6 2018

\(x=\frac{a}{m},y=\frac{b}{m},z=\frac{a+b}{2m}.\)

có :  \(z=\frac{1}{2}.\frac{\left(a+b\right)}{m}\)

có  \(x+y=\frac{a}{m}+\frac{b}{m}=\frac{\left(a+b\right)}{m}\)

\(z=\frac{1}{2}\left(x+y\right)\)

có \(x+x< x+y\) " vì x<y"

nhân 1/2 vào 2 vế của bdt " dấu ko đổi ta được  " nhân vào 2x < x+y

\(\frac{1}{2}.2x< \frac{1}{2}.\left(x+y\right)=z\)

vậy suy ra  \(x< \frac{\left(x+y\right)}{2}=z\)

lại có  x<y 

vậy x+y < y+y

nhân 1 /2 vào 2 vế ta được

\(\frac{1}{2}\left(x+y\right)< \frac{1}{2}\left(y+y\right)\)

\(z=\frac{1}{2}\left(x+y\right)< \frac{2y}{2}=y\)

29 tháng 6 2018

xin bài 2 ............................................ 5 phút nữa làmmmmmmmmmmm

31 tháng 10 2021

Câu 9:

\(a,\left(a+1\right)^2\ge4a\\ \Leftrightarrow a^2+2a+1\ge4a\\ \Leftrightarrow a^2-2a+1\ge0\\ \Leftrightarrow\left(a-1\right)^2\ge0\left(luôn.đúng\right)\)

Dấu \("="\Leftrightarrow a=1\)

\(b,\) Áp dụng BĐT cosi: \(\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge2\sqrt{a}\cdot2\sqrt{b}\cdot2\sqrt{c}=8\sqrt{abc}=8\)

Dấu \("="\Leftrightarrow a=b=c=1\)

Câu 10:

\(a,\left(a+b\right)^2\le2\left(a^2+b^2\right)\\ \Leftrightarrow a^2+2ab+b^2\le2a^2+2b^2\\ \Leftrightarrow a^2-2ab+b^2\ge0\\ \Leftrightarrow\left(a-b\right)^2\ge0\left(luôn.đúng\right)\)

Dấu \("="\Leftrightarrow a=b\)

\(b,\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac\le3a^2+3b^2+3c^2\\ \Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\left(luôn.đúng\right)\)

Dấu \("="\Leftrightarrow a=b=c\)

Câu 13:

\(M=\left(a^2+ab+\dfrac{1}{4}b^2\right)-3\left(a+\dfrac{1}{2}b\right)+\dfrac{3}{4}b^2-\dfrac{3}{2}b+2021\\ M=\left[\left(a+\dfrac{1}{2}b\right)^2-2\cdot\dfrac{3}{2}\left(a+\dfrac{1}{2}b\right)+\dfrac{9}{4}\right]+\dfrac{3}{4}\left(b^2-2b+1\right)+2018\\ M=\left(a+\dfrac{1}{2}b-\dfrac{3}{2}\right)^2+\dfrac{3}{4}\left(b-1\right)^2+2018\ge2018\\ M_{min}=2018\Leftrightarrow\left\{{}\begin{matrix}a+\dfrac{1}{2}b=\dfrac{3}{2}\\b=1\end{matrix}\right.\Leftrightarrow a=b=1\)

AH
Akai Haruma
Giáo viên
31 tháng 10 2021

Câu 6:

$2=(a+b)(a^2-ab+b^2)>0$

$\Rightarrow a+b>0$

$4(a^3+b^3)-N^3=4(a^3+b^3)-(a+b)^3$

$=3(a^3+b^3)-3ab(a+b)=(a+b)(a-b)^2\geq 0$
$\Rightarrow N^3\leq 4(a^3+b^3)=8$

$\Rightarrow N\leq 2$

Vậy $N_{\max}=2$

15 tháng 5 2016

ta có: a+c =9 => abc

                       +

                         cba

                         9 * 9

để abc+ cba thỏa mãn thì b phải là số có 1 chữ số

Vậy tâph hợp A các số b là{0;1;2;3;4;5;6;7;8;9}

15 tháng 5 2016

số phần tử của tập hợp A là 10

29 tháng 7 2020

Vì a,b,c là 3 số phân biệt nên nhiều nhất sẽ có 1 số bằng 0 

Gỉa sử a = 0 thì ... ( tự làm:v )

Nên A khác 0

Tương tự giả sử lần lượt b và c ta có điều phải chứng minh 

Cách của t đấy , làm theo ý nghĩ

29 tháng 7 2020

Nguyễn Thế Hoàng

12 phút · 

Trong hình ảnh có thể có: một hoặc nhiều người

18 tháng 3 2021

3-1=2 nhé

3 tháng 4 2021

? đây mà là toán lớp 1

4 tháng 4 2020

(a+b+c)(a+b-c)=3ab

<=>[(a+b)+c][(a+b)-c]=3ab

<=>(a+b)^2-c^2=3ab

<=>a^2+2ab+b^2-c^2=3ab

<=>a^2+b^2-c^2=ab..(cùng.bớt.2.vế.đi.2ab)

=>a^2+b^2-c^2/ab=1

=>a^2+b^2-c^2/2ab=1/2

=>cos.C=1/2

=>c=60

21 tháng 3 2021

đây không phải toán lớp 1

11 tháng 4 2021

aaaakk