Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đổi ẩn
\(\left(a;b;c\right)=\left(\frac{1}{x};\frac{1}{y};z\right)\)\(\Rightarrow\)\(x+y+z=3\)
\(P=\Sigma\frac{1}{\sqrt{xy+x+y}}\ge\Sigma\frac{2\sqrt{3}}{xy+x+y+3}\ge\frac{18\sqrt{3}}{\frac{\left(x+y+z\right)^2}{3}+2\left(x+y+z\right)+9}=\sqrt{3}\)
dấuu "=" xảy ra khi \(a=b=c=1\)
\(x=\frac{a}{m},y=\frac{b}{m},z=\frac{a+b}{2m}.\)
có : \(z=\frac{1}{2}.\frac{\left(a+b\right)}{m}\)
có \(x+y=\frac{a}{m}+\frac{b}{m}=\frac{\left(a+b\right)}{m}\)
\(z=\frac{1}{2}\left(x+y\right)\)
có \(x+x< x+y\) " vì x<y"
nhân 1/2 vào 2 vế của bdt " dấu ko đổi ta được " nhân vào 2x < x+y
\(\frac{1}{2}.2x< \frac{1}{2}.\left(x+y\right)=z\)
vậy suy ra \(x< \frac{\left(x+y\right)}{2}=z\)
lại có x<y
vậy x+y < y+y
nhân 1 /2 vào 2 vế ta được
\(\frac{1}{2}\left(x+y\right)< \frac{1}{2}\left(y+y\right)\)
\(z=\frac{1}{2}\left(x+y\right)< \frac{2y}{2}=y\)
xin bài 2 ............................................ 5 phút nữa làmmmmmmmmmmm
Câu 9:
\(a,\left(a+1\right)^2\ge4a\\ \Leftrightarrow a^2+2a+1\ge4a\\ \Leftrightarrow a^2-2a+1\ge0\\ \Leftrightarrow\left(a-1\right)^2\ge0\left(luôn.đúng\right)\)
Dấu \("="\Leftrightarrow a=1\)
\(b,\) Áp dụng BĐT cosi: \(\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge2\sqrt{a}\cdot2\sqrt{b}\cdot2\sqrt{c}=8\sqrt{abc}=8\)
Dấu \("="\Leftrightarrow a=b=c=1\)
Câu 10:
\(a,\left(a+b\right)^2\le2\left(a^2+b^2\right)\\ \Leftrightarrow a^2+2ab+b^2\le2a^2+2b^2\\ \Leftrightarrow a^2-2ab+b^2\ge0\\ \Leftrightarrow\left(a-b\right)^2\ge0\left(luôn.đúng\right)\)
Dấu \("="\Leftrightarrow a=b\)
\(b,\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac\le3a^2+3b^2+3c^2\\ \Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\left(luôn.đúng\right)\)
Dấu \("="\Leftrightarrow a=b=c\)
Câu 13:
\(M=\left(a^2+ab+\dfrac{1}{4}b^2\right)-3\left(a+\dfrac{1}{2}b\right)+\dfrac{3}{4}b^2-\dfrac{3}{2}b+2021\\ M=\left[\left(a+\dfrac{1}{2}b\right)^2-2\cdot\dfrac{3}{2}\left(a+\dfrac{1}{2}b\right)+\dfrac{9}{4}\right]+\dfrac{3}{4}\left(b^2-2b+1\right)+2018\\ M=\left(a+\dfrac{1}{2}b-\dfrac{3}{2}\right)^2+\dfrac{3}{4}\left(b-1\right)^2+2018\ge2018\\ M_{min}=2018\Leftrightarrow\left\{{}\begin{matrix}a+\dfrac{1}{2}b=\dfrac{3}{2}\\b=1\end{matrix}\right.\Leftrightarrow a=b=1\)
Câu 6:
$2=(a+b)(a^2-ab+b^2)>0$
$\Rightarrow a+b>0$
$4(a^3+b^3)-N^3=4(a^3+b^3)-(a+b)^3$
$=3(a^3+b^3)-3ab(a+b)=(a+b)(a-b)^2\geq 0$
$\Rightarrow N^3\leq 4(a^3+b^3)=8$
$\Rightarrow N\leq 2$
Vậy $N_{\max}=2$
Vì a,b,c là 3 số phân biệt nên nhiều nhất sẽ có 1 số bằng 0
Gỉa sử a = 0 thì ... ( tự làm:v )
Nên A khác 0
Tương tự giả sử lần lượt b và c ta có điều phải chứng minh
Cách của t đấy , làm theo ý nghĩ
(a+b+c)(a+b-c)=3ab
<=>[(a+b)+c][(a+b)-c]=3ab
<=>(a+b)^2-c^2=3ab
<=>a^2+2ab+b^2-c^2=3ab
<=>a^2+b^2-c^2=ab..(cùng.bớt.2.vế.đi.2ab)
=>a^2+b^2-c^2/ab=1
=>a^2+b^2-c^2/2ab=1/2
=>cos.C=1/2
=>c=60
tui đương nhiên không phải haha
thế thì không phải bạn rồi