Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x + 20)⁴ + (2y - 1)²⁰²⁴ ≤ 0
⇒ (x + 20)⁴ = 0 và (2y - 1)²⁰²⁴ = 0
*) (x + 20)⁴ = 0
x + 20 = 0
x = 0 - 20
x = -20
*) (2y - 1)²⁰²⁴ = 0
2y - 1 = 0
2y = 1
y = 1/2
M = 5.(-20)².1/2 - 4.(-2).(1/2)²
= 1000 + 2
= 1002
|2x - 1| + (y - 2)² ≤ 0 (1)
Do |2x - 1| ≥ 0 và (y - 2)²⁰²² ≥ 0 (với mọi x, y ∈ R)
(1) ⇒ |2x - 1| + (y - 2)²⁰²² = 0
⇒ |2x - 1| = 0 và (y - 2)²⁰²² = 0
*) |2x - 1| = 0
2x - 1 = 0
2x = 1
x = 1/2
*) (y - 2)²⁰²² = 0
y - 2 = 0
y = 2
⇒ B = 12x² + 4xy²
= 12.(1/2)² + 4.(1/2).2²
= 3 + 8
= 11
\(A=\left(x+2\right)^2+\left|x+2\right|+15\)
Ta có:
\(\left(x+2\right)^2\ge0\forall x\)
\(\left|x+2\right|\ge0\forall x\)
\(\Rightarrow\left(x+2\right)^2+\left|x+2\right|\ge0\forall x\)
\(\Rightarrow\left(x+2\right)^2+\left|x+2\right|+15\ge15\forall x\)
\(\Rightarrow A\ge15\)Dấu bằng xảy ra.
\(\Leftrightarrow x+2=0\Leftrightarrow x=-2\)
Vậy \(minA=15\Leftrightarrow x=-2\)
Câu hỏi của TRẦN THỊ BÍCH HỒNG - Toán lớp 7 - Học toán với OnlineMath
( x - 1 )2018 + (y - 2 )2020+(z-3)2022=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y-2=0\\z-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\\z=3\end{matrix}\right.\)
\(A=\dfrac{1}{9}\left(-x\right)^{2021}y^2z^3=\dfrac{1}{3}\left(-1\right)^{2021}.2^2.3^3=\dfrac{1}{3}.\left(-1\right).4.27=-36\)
Vì \(\left(x-2\right)^4\ge0\forall x\)dấu "=" xảy ra \(\Leftrightarrow\)x-2=0 \(\Leftrightarrow\)x=2
\(\left(2y-1\right)^{2014}\ge0\forall y\)Dấu "=" xảy ra \(\Leftrightarrow\)2y - 1=0 \(\Leftrightarrow y=\frac{1}{2}\)
\(\Rightarrow\left(x-2\right)^4+\left(2y-1\right)^{2014}\ge0\)
Kết hợp với điều kiện đề bài \(\left(x-1\right)^4+\left(2y-1\right)^{2014}\le0\), ta được:
\(\left(x-2\right)^4+\left(2y-1\right)^{2014}=0\)
Vậy x = 2; \(y=\frac{1}{2}\)
Thay x=2; \(y=\frac{1}{2}\)vào M, ta có:
\(M=21.2^2.\frac{1}{2}+4.2.\left(\frac{1}{2}\right)^2\)
\(=21.4.\frac{1}{2}+4.2.\frac{1}{4}\)
\(=42+2=44\)
Vậy M=44