Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay x+1=80 ta đc:
\(P\left(x\right)=x^7-\left(x+1\right)x^6+\left(x+1\right)x^5-\left(x+1\right)x^4+...+\left(x+1\right)x+15\)
\(=x^7-x^7-x^6+x^6+x^5+...+x^2+x+15\)
\(79+15=94\)
\(Ta \) \(có \) \(:\)
\(x = 79 \)\(\Rightarrow\)\(x + 1 = 80\)
\(Thay \) \(x + 1 = 80 \) \(vào \) \(P(x)\) \(ta\) \(được :\)
\(P ( x ) = x ^7 - ( x + 1 )x ^6 + ( x + 1 )x^5\)\(- ( x + 1 )x ^4\)\(+ ...+ ( x + 1 )x + 15\)
\(P ( x ) = x ^7 - x ^7- x^6 + x^6 + x^5 - x^ 5\)\(- x ^4 + x ^4 + ... - x^ 2 + x ^2 + x + 15\)
\(P ( x ) = x + 15\)
\(Thay x = 79 vào P ( x ) ta được :\)
\(P ( x ) = 79 + 15 = 94\)
Ta có: x=79
nên x+1=80
\(P\left(x\right)=-x^6\left(x+1\right)+x^5\left(x+1\right)-x^4\left(x+1\right)+...+x\left(x+1\right)+15\)
\(=-x^7+x+15\)
\(=-79^7+94\)
\(P\left(x\right)=x^7-\left(x+1\right)x^6+\left(x+1\right)x^5-\left(x+1\right)x^4\)\(+...+\left(x+1\right)x+15\)
\(P\left(x\right)=x^7-x^7-x^6+x^6+...+x^2+x+15\)
\(P\left(x\right)=x+15=94\)
Vậy giá trị của P(x) tại x = 79 là 94
\(C=x^7-80x^6+80x^5-80x^4+80x^3-80x^2+80x+15\)
Ta có x=79 => 80=79+1=x+1
\(C=x^7-\left(x+1\right)x^6+\left(x+1\right)x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x+15\)
\(C=x^7-x^7-x^6+x^6+x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x+15\)
\(C=x+15=79+15=94\)
P(x)=x7−80x6+80x5−8x4+...+80x+15
⇒P(x)=x7−(x+1).x6+(x+1).x5+...+(x+1)x+15
⇒P(x)=x7−x7−x6+x6+x5−x5+...−x3−x2+x2+x+15
⇒P(x)=x+15 (1)
Thay x=79 vào (1),ta được:
P(79)=79+15=84
~ Học tốt ~
Với x=79=>80=x+1.
Ta có:
B=x7 -(x+1)x6 + (x+1)x5 -(x+1)4 +...+(x+1)x +15
=x7 - x7+..+x+15=79+15=94
Ta có: 80 = 79 + 1 = x + 1
E = 1969 - 80x + 80x2 - 80x3 + 80x4 - ... + 80x1968 - x1969
= 1969 - (x+1)x + (x+1)x2 - (x+1)x3 + (x+1)x4 - ... + (x+1)x1968 - x1969
= 1969 - x2 - x + x3 + x2 - x4 - x3 + x5 + x4 - ... + x1969 + x1968 - x1969
= 1969 - x = 1969 - 79 = 1890
Theo bài ra ta có : \(x=79\Rightarrow\left\{{}\begin{matrix}1969=x+1890\\80=1+x\end{matrix}\right.\left(1\right)\)
\(\text{Thay }\left(1\right)\text{ biểu thức }E=1969-80x+80x^2-80x^3+80x^4-...+80x^{1968}-x^{1969}\)
\(E=1890+x-\left(1+x\right)x+\left(1+x\right)x^2-\left(1+x\right)x^3+...+\left(1+x\right)x^{1968}-x^{1969}\)
\(E=1890+x-x-x^2+x^2+x^3-x^3-x^4+...+x^{1968}+x^{1969}-x^{1969}\)
\(E=1890\)
Vậy giá trị của biểu thức \(E=1969-80x+80x^2-80x^3+80x^4-...+80x^{1968}-x^{1969}\) tại \(x=79\) là \(1890\)