K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 1 2018

Lời giải:

Ta thấy: \(|x-1|\geq 0\forall x\in\mathbb{R}\)

\((y+2)^{20}=[(y+2)^{10}]^{2}\geq 0\forall y\in\mathbb{R}\)

\(\Rightarrow |x-1|+(y+2)^{20}\geq 0\)

Dấu bằng xảy ra khi \(\left\{\begin{matrix} |x-1|=0\\ (y+2)^{20}=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=1\\ y=-2\end{matrix}\right.\)

Thay vào biểu thức B

\(B=2x^5-5y^3+2017=2.1^5-5(-2)^3+2017=2059\)

11 tháng 4 2022

-Có \(\left|x+1\right|+\left(y-2\right)^2=0\)

-Vì \(\left|x+1\right|\ge0\forall x;\left(y-2\right)^2\ge0\forall y\)

\(\Rightarrow\left|x+1\right|=0\) ; \(\left(y-2\right)^2=0\)

\(\Rightarrow x=-1;y=2\)

-Thay \(x=-1;y=2\) vào \(C=2x^6y-3xy^3-20\) ta được:

\(C=2.\left(-1\right)^6.2-3.\left(-1\right).2^3-20=8\)

1 tháng 11 2023

(x + 20)⁴ + (2y - 1)²⁰²⁴ ≤ 0

⇒ (x + 20)⁴ = 0 và (2y - 1)²⁰²⁴ = 0

*) (x + 20)⁴ = 0

x + 20 = 0

x = 0 - 20

x = -20

*) (2y - 1)²⁰²⁴ = 0

2y - 1 = 0

2y = 1

y = 1/2

M = 5.(-20)².1/2 - 4.(-2).(1/2)²

= 1000 + 2

= 1002

a) Ta có 2011 = x => 2012 = x + 1

Thay x + 1 = 2012 vào biểu thức ta dc:

x5 - (x + 1)x4 + (x + 1)x3 - (x+1)x2 + (x+1)x - 2012

= x5 - x5 - x4 + x4 + x3 - x3 - x2 + x2 + x - 2012 = x - 2012 = 2011 - 2012 = -1

Vậy giá trị của biểu thức là -1 khi x = 2011

b) Ta có : (x - 1)60 + (y + 2)90 = 0 <=> \(\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\) <=> \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

Thay x = 1 và y = -2 vào biểu thức ta dc: 2.15 - 5.(-2)3 + 4 = 2 - 5.(-8) + 4 = 2 + 40 + 4 = 46

Vậy ...

14 tháng 2 2018

Vì \(\left|x-1\right|\ge0\) và \(\left(y+2\right)^{20}\ge0\) nên \(\left|x-1\right|+\left(y+2\right)^{20}\ge0\)

Mà \(\left|x-1\right|+\left(y+2\right)^{20}=0\) ( đề bài cho )

\(\Rightarrow\)\(\left|x-1\right|=\left(y+2\right)^{20}=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}\left|x-1\right|=0\\\left(y+2\right)^{20}=0\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=0\\y+2=0\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1\\y=-2\end{cases}}\)

Thay \(x=1;y=-2\) vàp biểu thức \(2x^2-5y^3+2015\) ta được : 

\(2.1^2-5.\left(-2\right)^3+2015=2.1-5.\left(-8\right)+2015=2-\left(-40\right)+2015=42+2015=2057\)

27 tháng 5 2020

a,ta co : \(2\left(x+1\right)=3\left(4x-1\right)\)

\(< =>2x+2=12x-3\)

\(< =>10x=5\)\(< =>x=\frac{1}{2}\)

khi do : \(P=\frac{2x+1}{2x+5}=\frac{1+1}{1+5}=\frac{2}{6}=\frac{1}{3}\)

b, ta co : \(\left(x-5\right)\left(y^2-9\right)=0\)

\(< =>\orbr{\begin{cases}x-5=0\\y^2-9=0\end{cases}}\)

\(< =>\orbr{\begin{cases}x=5\\y=\pm3\end{cases}}\)

xong nhe 

27 tháng 5 2020

Cái này thì EZ mà sư phụ : ]

a) 2(x+1) = 3(4x-1)

=> 2x + 2 = 12x - 3

=> 2x - 12x = -3 - 2

=> -10x = -5

=> x = 1/2

Thay x = 1/2 vào P ta được : \(\frac{2\cdot\frac{1}{2}+1}{2\cdot\frac{1}{2}+5}=\frac{1+1}{1+5}=\frac{2}{6}=\frac{1}{3}\)

b) \(A=\left(x-5\right)\left(y^2-9\right)=0\)

=> \(\orbr{\begin{cases}x-5=0\\y^2-9=0\end{cases}}\)

\(x-5=0\Rightarrow x=5\)

\(y^2-9=0\Rightarrow y^2=9\Rightarrow\orbr{\begin{cases}y=3\\y=-3\end{cases}}\)

Vậy ta có các cặp x, y thỏa mãn : ( 5 ; 3 ) ; ( 5 ; -3 )

28 tháng 1 2022

\(x+y+1=0\\ \Leftrightarrow x+y=-1\)

Thay x+y=-1 vào C ta có:

\(C=x^2\left(x+y\right)-y^2\left(x+y\right)+x^2-y^2+2\left(x+y\right)+3\)

\(\Rightarrow C=x^2\left(-1\right)-y^2\left(-1\right)+x^2-y^2+2\left(-1\right)+3\)

\(\Rightarrow C=-x^2+y^2+x^2-y^2-2+3\)

\(\Rightarrow C=\left(-x^2+x^2\right)+\left(y^2-y^2\right)+\left(3-2\right)\)

\(\Rightarrow C=0+0+1\)

\(\Rightarrow C=1\)

28 tháng 1 2022

\(x+y+1=0\) =>\(x+y=-1\)

- Thay \(x+y=-1\) vào C ta được:

\(C=x^2\left(x+y\right)-y^2\left(x+y\right)+x^2-y^2+2\left(x+y\right)+3\)

\(=-x^2+y^2+x^2-y^2-2+3\)=1

1 tháng 8 2023

ta có :

`x^2 = 4`

`=> x = 2 ;-2`

TH1 :

thay `x=2 ; y = 5` ta có :

`2(3.5 -1) = 2.14 = 28`

TH2 :

thay `x= -2 , y = 5` ta có:

`(-2)(3.5-1) = (-2).14 = -28`

`b)`

ta có : `y^2 =1 `

`=> y = 1 ; -1;`

TH1:

thay `x=5 ; y=1` vào ta có:

`(5-3)(1-4)`

`=2.(-3)`

`=-6`

TH2:

thay `x = 5 ; y = -1` vào ta có :

`(5-3)(-1-4) `

`= 2 . (-5)`

`= -10`

1 tháng 8 2023

a. \(x^2=4\\ \Leftrightarrow x=\sqrt{4}=2\)

Thay \(x=2;y=5\) vào ta được:

\(2\left(3\cdot5-1\right)\)

\(30-2=28\)

b. \(y^2=1\\ \Leftrightarrow y=\sqrt{1}=1\)

Thay \(x=5;y=1\) vào ta được:

\(\left(5-3\right)\left(1-4\right)\)

\(1\cdot\left(-3\right)=-3\)