K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A(1/2^2022)=1/2^2022+1/2^4044+...+1/2^(2022^2021)

=>2^2022*A=1+1/2^2022+...+1/2^(2022^2020)

=>A*(2^2022-1)=1-1/2^(2022^2021)

=>\(A=\dfrac{2^{2022^{2021}}-1}{2^{2022}-1}\)

11 tháng 11 2021

A

11 tháng 11 2021

1: \(M=0\)

mà \(\left\{{}\begin{matrix}\left(x-2021\right)^{2022}>=0\\\left(2021-y\right)^{2020}>=0\end{matrix}\right.\)

nên x-2021=0 và 2021-y=0

=>x=2021 và y=2021

4 tháng 4 2022

cảm ơn bạn nhiều nha

17 tháng 12 2021

a) \(M=2022-\left|x-9\right|\le2022\)

\(maxM=2022\Leftrightarrow x=9\)

b) \(N=\left|x-2021\right|+2022\ge2022\)

\(minN=2022\Leftrightarrow x=2021\)

6 tháng 3 2022

( x - 1 )2018 + (y - 2 )2020+(z-3)2022=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y-2=0\\z-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\\z=3\end{matrix}\right.\)

\(A=\dfrac{1}{9}\left(-x\right)^{2021}y^2z^3=\dfrac{1}{3}\left(-1\right)^{2021}.2^2.3^3=\dfrac{1}{3}.\left(-1\right).4.27=-36\)

12 tháng 4 2020

Xét \(\left(x^2+2020\right)\left(x-10\right)=0\)

Vì \(x^2\ge0\forall x\)\(\Rightarrow x^2+2020\ge2020\forall x\)

\(\Rightarrow\left(x^2+2020\right)\left(x-10\right)=0\)\(\Leftrightarrow x-10=0\)\(\Leftrightarrow x=10\)

Ta thấy: trong biểu thức \(P=\left(x^2-1\right)\left(x^2-2\right)\left(x^2-3\right)......\left(x^2-2020\right)\)có chứa thừa số \(x^2-100\)

Thay \(x=10\)vào thừa số \(x^2-100\)ta được: \(10^2-100=100-100=0\)

\(\Rightarrow P=0\)

Vậy \(P=0\)

12 tháng 4 2020

Theo đề bài, ta có: (x^2+2020)(x-10)=0

Vì x^2 luôn lớn hơn hoặc bằng 0 nên x^2+2020>0

=> x-10=0

Khi đó P=(x^2-1)(x^2-2)...(x^2-100)(x^2-101)...(x^2-2020)

 => P=(10^2-1)(10^2-2)...(10^2-100)(10^2-101)...(10^2-2020)

=> P=0 < Vì 10^2-100=0>

Vậy P=0

AH
Akai Haruma
Giáo viên
20 tháng 6 2023

$A=(x-4)^2+1$

Ta thấy $(x-4)^2\geq 0$ với mọi $x$

$\Rightarroe A=(x-4)^2+1\geq 0+1=1$

Vậy GTNN của $A$ là $1$. Giá trị này đạt tại $x-4=0\Leftrightarrow x=4$

-------------------

$B=|3x-2|-5$

Vì $|3x-2|\geq 0$ với mọi $x$ 

$\Rightarrow B=|3x-2|-5\geq 0-5=-5$

Vậy $B_{\min}=-5$. Giá trị này đạt tại $3x-2=0\Leftrightarrow x=\frac{2}{3}$

AH
Akai Haruma
Giáo viên
20 tháng 6 2023

$C=5-(2x-1)^4$

Vì $(2x-1)^4\geq 0$ với mọi $x$ 

$\Rightarrow C=5-(2x-1)^4\leq 5-0=5$

Vậy $C_{\max}=5$. Giá trị này đạt tại $2x-1=0\Leftrightarrow x=\frac{1}{2}$

----------------

$D=-3(x-3)^2-(y-1)^2-2021$
Vì $(x-3)^2\geq 0, (y-1)^2\geq 0$ với mọi $x,y$

$\Rightarrow D=-3(x-3)^2-(y-1)^2-2021\leq -3.0-0-2021=-2021$

Vậy $D_{\max}=-2021$. Giá trị này đạt tại $x-3=y-1=0$

$\Leftrightarrow x=3; y=1$