K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2018

\(a^3+6=-3a-2a^2\)

\(\Leftrightarrow a^3+2a^2+6+3a=0\)

\(\Leftrightarrow a^2\left(a+2\right)+3\left(a+2\right)=0\)

\(\Leftrightarrow\left(a+2\right)\left(a^2+3\right)=0\)

\(\Leftrightarrow a+2=0\left(do.a^2+3>0\right)\)

<=>a=-2

thay a=-2 vào biểu thức ta được \(A=\frac{-2-1}{-2+3}=\frac{-3}{1}=-3\)

9 tháng 5 2018

Ta có : a3+6=-3a-2a2

      <=> a3+6+3a+2a2=0

      <=>(a3+2a2)+(3a+6)=0

      <=>a2(a+2)+3(a+2)=0

      <=>(a2+3)(a+2)=0

      \(\hept{\begin{cases}a^2+3=0\\a+2=0\end{cases}\Leftrightarrow\hept{\begin{cases}a^2=-3\\a=-2\end{cases}\Leftrightarrow}\hept{\begin{cases}a\in\varnothing\\a=-2\end{cases}}}\)

Thay a=-2 vào biểu thức :

=> A= \(\frac{-2-2}{-2+3}=\frac{-4}{1}=-4\)

9 tháng 4 2017

A=a^4 -2a^3 + 3a^2 -4a+5

A=(a^4 -2a^3 +a^2)+(2a^2 -4a+2)+3

A=(a^2 -a)^2 +2(a^2 -2a+1)+3

A=((a^2 -a)^2 +2(a-1)^2 +3

Vì (a^2 -a)^2 +2(a-1)^2 +3 >hoặc=3 với mọi a.Dấu"=" xảy ra khi a=1

Hay:A>hoặc=3.Dấu"=" xảy ra khi a=1

Vậy giá trị nhỏ nhất A=3 tại a=1. Bạn nhớ nếu nó hỏi Min thì mới kết luận là Min còn hỏi GTNN thì kết luận GTNN.