K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2023

Giả sử x;y;z đều chẵn

\(\Rightarrow x=2a;y=2b;z=2c\Rightarrow xyz=8abc⋮4\)

Nếu x;y;z đều lẻ => (x-y); (y-z); (z-x) chẵn

\(\Rightarrow\left(x-y\right)=2a;\left(y-z\right)=2b;\left(z-x\right)=2c\)

\(\Rightarrow\left(x-y\right)\left(y-z\right)\left(z-x\right)=8abc⋮4\)

Nếu trong 3 số x;y;z có ít nhất 1 số lẻ giả sử x lẻ  

=> xyz chẵn và \(xyz=2a\)

=> (y-z) chẵn và \(y-z=2b\)

\(\Rightarrow xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)=\)

\(=2a.\left(x-y\right).2b.\left(z-x\right)=4ab\left(x-y\right)\left(z-x\right)⋮4\)

\(\Rightarrow xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)⋮4\forall x;y;z\)

Nếu 1 trong 3 số x; y; z chia hết cho 3

\(\Rightarrow xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)⋮3\)

Nếu không có số nào chia hết cho 3 ta có một số khi chia cho 3 dư 1 hoặc 2 => trong 3 số có 2 số đồng dư

=> 1 trong 3 số (x-y); (y-z); (z-x) có 1 số chia hết cho 3

\(\Rightarrow xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)⋮3\)

\(\Rightarrow xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)⋮3\forall x;y;z\)

Mà 3 và 4 là 2 số nguyên tố cùng nhau

\(\Rightarrow xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)⋮3.4=12\forall x;y;z\)

 

 

Để A không xác định được => x-2=0 => x=2

Để A âm => x-2 âm (vì x2+3 luôn dương) => x-2<0 => x<2

Để A nguyên => x2+3 chia hết cho x-2 => x.(x-2)+2.(x-2)+4+3 = (x-2).(x+2)+7 chia hết cho x-2 => 7 chia hết cho x-2

Lập Bảng

7 tháng 10 2018

lớp 8?

\(A=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)+2045\)

\(=\left(x^2+6x-x-6\right)\left(x^2+3x+2x+6\right)+2045\)

\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)+2045\)

\(=\left(x^2+5x\right)^2-6^2+2045\)

\(=\left(x^2+5x\right)^2+2009\ge2009\)

Dấu "=" xày ra khi x2+5x=0  <=> x=0 hoặc x=-5

Vậy MinA=2009 khi x=0 hoặc x=-5

7 tháng 10 2018

\(A=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)+2045\)

\(A=\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]+2045\)

\(A=\left(x^2+5x-6\right)\left(x^2+5x+6\right)+2045\)

\(A=\left(x^2+5x\right)^2-36+2045\)

\(A=\left(x^2+5x\right)^2+2009\)

Vì \(\left(x^2+5x\right)^2\ge0\Rightarrow\left(x^2+5x\right)^2+2009\ge2009\)

\(\Rightarrow A\ge2009\)

=> GTNN của A bằng 2009 

Dấu '=' xảy ra khi \(\left(x^2+5x\right)^2=0\Leftrightarrow x^2+5x=0\Leftrightarrow x\left(x+5\right)=0\)

=> x = 0 hoặc x + 5 = 0 <=>  x = -5

Vậy GTNN của A bằng 2009

27 tháng 1 2022

=> (8 - x)/(x - 5) ∈ Z
=> 8 - x chia hết cho x - 5
=> 3 - (x - 5) chia hết cho x - 5
=> 3 chia hết cho x - 5
=> x - 5 ∈ Ư(3) = (-3 ; -1 ; 1 ; 3)
=> x ∈ (2 ; 4 ; 6 ; 8)
vậy x ∈ (2 ; 4 ; 6 ; 8) mik ko chắc đâu 

HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

a) Tại x = 2, giá trị của biểu thức đại số \(3x - 2\)= \(3.2 - 2 = 6 - 2 = 4\).

b) Tại x = – 3, giá trị của đa thức P(x) = \( - 4x + 6\) bằng:

\(P( - 3) =  - 4. - 3 + 6 = 12 + 6 = 18\).

8 tháng 4 2020

a) Thay x = -1 và y = 3 vào A, ta được :

A = 2.(-1)[(-1) + 3] - (-1) + 7 - 3

A = -2.2 + 1 + 4

A = -4 + 5

A = 1

b) |y| = 3 => \(\orbr{\begin{cases}y=3\\y=-3\end{cases}}\)

*Thay x =-1 và y = 3 vào biểu thức :

Phần này bạn sẽ làm ý như câu a vậy :33

*Thay x = -1 và y =-3 vào A, ta được :

A = 2.(-1).[(-1) + (-3)] - (-1) + 7 - (-3)

A = -2.(-4) + 1 + 7 + 3

A = 8 + 11

A = 19

18 tháng 3 2016

a)y2 = 7 => y = \(\sqrt{7}hoặc-\sqrt{7}\)

Nếu y = \(\sqrt{7}\) thì :

x2y3 = 5 . y.y

x2y3 = 5.7.\(\sqrt{7}\) = 35\(\sqrt{7}\)

Nếu y = -\(\sqrt{7}\)  thì :

x2y3 = 5.7. (-\(\sqrt{7}\)) = -35\(\sqrt{7}\)

b) x2y= 5.7 = 35

x6y6 = (x2y2)3 = 353 = 42875

c) làm tương tự câu (a).  Chia x làm 2 trường hợp bằng căng 5 hoặc cặng 5 rồi thế vô tính nhé bạn!