Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(x=4+\sqrt{3}+4-\sqrt{3}=8\)
Khi x=8 thì \(A=\dfrac{2-5\cdot2\sqrt{2}}{2\sqrt{2}+1}=\dfrac{2-10\sqrt{2}}{2\sqrt{2}+1}=-6+2\sqrt{2}\)
\(\sqrt{8+2\sqrt{2}+2\sqrt{5}+2\sqrt{10}}-\sqrt{7+2\sqrt{10}}\)
\(=\sqrt{\sqrt{2}^2+\sqrt{5}^2+1^2+2\sqrt{2}+2\sqrt{5}+2\sqrt{2}.\sqrt{5}}-\sqrt{\sqrt{5}^2+2\sqrt{10}+\sqrt{2}^2}\)
\(=\sqrt{\left(\sqrt{5}+\sqrt{2}+1\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}\)
\(=\sqrt{5}+\sqrt{2}+1-\sqrt{5}-\sqrt{2}\)
\(=1\)
Ta có: \(b=\dfrac{3\sqrt{8}-2\sqrt{12}+\sqrt{20}}{3\sqrt{18}-2\sqrt{27}+\sqrt{45}}\)
\(=\dfrac{2\left(3\sqrt{2}-2\sqrt{3}+\sqrt{5}\right)}{3\left(3\sqrt{2}-2\sqrt{3}+\sqrt{5}\right)}\)
\(=\dfrac{2}{3}\)
Ta có: \(a=\sqrt{4+2\sqrt{2}}\cdot\sqrt{2+\sqrt{2+\sqrt{2}}}\cdot\sqrt{2-\sqrt{2+\sqrt{2}}}\)
\(=\sqrt{4+2\sqrt{2}}\cdot\sqrt{4-2-\sqrt{2}}\)
\(=\sqrt{2\left(2+\sqrt{2}\right)\left(2-\sqrt{2}\right)}\)
=2
Thay a=2 và \(b=\dfrac{2}{3}\) vào M, ta được:
\(M=\dfrac{1+2\cdot\dfrac{2}{3}}{2+\dfrac{2}{3}}-\dfrac{1-2\cdot\dfrac{2}{3}}{2-\dfrac{2}{3}}\)
\(=\dfrac{7}{8}+\dfrac{1}{4}\)
\(=\dfrac{7}{8}+\dfrac{2}{8}=\dfrac{9}{8}\)
\(A=2\sqrt{2}+3\sqrt{2}-4\sqrt{2}=\sqrt{2}\)
B=6+18-8=16
\(A=2\sqrt{2}+3\sqrt{2}-4\sqrt{2}=\sqrt{2}\\ B=2\cdot3+3\cdot6-8=6+18-8=16\)
\(x>\dfrac{1}{2}\sqrt{1}-\dfrac{\sqrt{2}}{8}>0\)
\(x^2=\dfrac{1}{4}\left(\sqrt{2}+\dfrac{1}{8}\right)+\dfrac{1}{32}-\dfrac{\sqrt{2}}{8}\sqrt{\sqrt{2}+\dfrac{1}{8}}\)
\(x^2=\dfrac{1}{16}+\dfrac{\sqrt{2}}{4}-\dfrac{\sqrt{2}}{8}\left(2x+\dfrac{\sqrt{2}}{4}\right)\)
\(x^2=\dfrac{1}{16}+\dfrac{\sqrt{2}}{4}-\dfrac{\sqrt{2}}{4}x-\dfrac{1}{16}=\dfrac{\sqrt{2}}{4}\left(1-x\right)\)
\(\Rightarrow x^4=\dfrac{1}{8}\left(x^2-2x+1\right)\)
\(\Rightarrow x^4+x+1=\dfrac{1}{8}\left(x^2-2x+1\right)+x+1=\dfrac{\left(x+3\right)^2}{8}\)
\(\Rightarrow A=x^2+\sqrt{\dfrac{\left(x+3\right)^2}{8}}=\dfrac{\sqrt{2}}{4}\left(1-x\right)+\dfrac{\sqrt{2}}{4}\left(x+3\right)=\sqrt{2}\)
\(=2\sqrt{2}-\dfrac{2\sqrt{2}}{2}=\dfrac{2\sqrt{2}}{2}=\sqrt{2}\)
\(\sqrt{8+\sqrt{8}+\sqrt{20}+\sqrt{40}}=\sqrt{8+2\sqrt{2}+2\sqrt{5}+2\sqrt{10}}\)
\(=\sqrt{2\left(4+\sqrt{2}+\sqrt{5}+\sqrt{10}\right)}\)