\(\left(-3\right)^{2015}\times\left(\frac{1}{3}\right)^{2015}+\left...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2016

\(\left(-3\right)^{2015}x\left(\frac{1}{3}\right)^{2015}+\left(0.25\right)^{2016}x4^{2016}\)

=\(\left(-3x\frac{1}{3}\right)^{2015}+\left(0.25x4\right)^{2016}\)

=\(\left(-1\right)^{2015}+1^{2016}\)

=\(-1+1\)

=\(0\)

22 tháng 1 2017

Vì \(\hept{\begin{cases}\left|x-2\right|\ge0\\\sqrt{\left(y+1\right)^{2015}}\ge0\end{cases}\Rightarrow\left|x-2\right|+\sqrt{\left(y+1\right)^{2015}}\ge}0\)

Dấu "=" của đẳng thức xảy ra khi \(\left|x-2\right|=\sqrt{\left(y+1\right)^{2015}}=0\)

\(\left|x-2\right|=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)

\(\sqrt{\left(y+1\right)^{2015}}=0\Leftrightarrow\left(y+1\right)^{2015}=0\Leftrightarrow y+1=0\Leftrightarrow y=-1\)

Thay x=2 và y=-1 vào biểu thức P ta có:

\(P=2x^3+15y^3+2016=2.2^3+15.\left(-1\right)^3+2016=16+\left(-15\right)+2016=2017\)

Vậy ................

22 tháng 1 2017

\(P=2.2^3-15+2016=2017\)

4 tháng 3 2018

\(A=\frac{1}{2}\left(1+\frac{1}{1\cdot3}\right)\left(1+\frac{1}{2\cdot4}\right)...\left(1+\frac{1}{2015\cdot2017}\right)\)\(A=\frac{1}{2}\left(\frac{1\cdot3+1}{1\cdot3}\right)\left(\frac{2\cdot4+1}{2\cdot4}\right)...\left(\frac{2015\cdot2017+1}{2015\cdot2017}\right)\)

\(A=\frac{1^2}{2}\cdot\frac{2^2}{1\cdot3}\cdot\frac{3^2}{2\cdot4}\cdot\cdot\cdot\frac{2016^2}{2015\cdot2017}\)

\(A=\frac{1^2\cdot2^2\cdot3^2\cdot\cdot\cdot2016^2}{2\cdot1\cdot3\cdot2\cdot4\cdot\cdot\cdot2015\cdot2017}\)

\(A=\frac{2016}{2017}\)

24 tháng 3 2020

Thay \(a=\frac{1}{2015}\) vào biểu thức P ta được:

\(P=\left|\frac{1}{2015}-\frac{1}{2014}\right|+\left|\frac{1}{2015}-\frac{1}{2016}\right|\)

Ta có: \(P=\frac{1}{2014}-\frac{1}{2015}+\frac{1}{2015}-\frac{1}{2016}\)

\(P=\frac{1}{2014}-\frac{1}{2016}\)

\(P=\frac{2016-2014}{2014.2016}=\frac{2}{2014.2016}\)

\(P=\frac{1}{1007.2016}=\frac{1}{2030112}\)

6 tháng 2 2020

(3x - 1)^2016 + (5y - 3)^2016 < 0    (1)

có (3x - 1)^2016 > 0 

     (5y - 3)^2018 > 0

=> (3x-1)^2016  + (5y - 3)^2018 > 0    và (1)

=> (3x - 1)^2016 + (5y - 3)^2016 = 0

=> 3x - 1 = 0 và 5y - 3 = 0

=> x = 1/23 và y = 3/5

6 tháng 2 2020

Thông cảm máy chụp đểu

24 tháng 11 2019

b) Để \(\frac{6}{x+1}.\frac{x-1}{3}\)là một số nguyên =>\(\frac{6.\left(x-1\right)}{\left(x+1\right).3}\)phải là một số nguyên 

Ta có:

\(\frac{6.\left(x-1\right)}{\left(x+1\right).3}=\frac{2\left(x-1\right)}{x+1}=\frac{2\left(x+1\right)-3}{x+1}\)=> Để \(\frac{6}{x+1}.\frac{x-1}{3}\)là một số nguyên thì 2(x+1)-3 phải chia hết cho x+1

=> 3 phải chia hết cho x+1

=> x+1 thuộc vào Ư(3)=(1;-1;3;-3)

Ta có bảng

x+11-13-3
x0-22-4

Vậy x=0;-2;2;-4 thì thỏa mãn yêu cầu đề bài

27 tháng 3 2020

Ta có : P = \(\left|a-\frac{1}{2014}\right|+\left|a-\frac{1}{2016}\right|\)

Thay a = \(\frac{1}{2015}\)vào biểu thức P ,ta có : 

\(\left|\frac{1}{2015}-\frac{1}{2014}\right|+\left|\frac{1}{2015}-\frac{1}{2016}\right|\)

\(=\frac{1}{2014}-\frac{1}{2015}+\frac{1}{2015}-\frac{1}{2016}\)

\(=\frac{1}{2014}-\frac{1}{2016}\)

\(=\frac{2016-2014}{2014.2016}=\frac{2}{4060224}=\frac{1}{2030112}\)

Vậy P = \(\frac{1}{2030112}\)

30 tháng 8 2016

\(\frac{10^{2016}+2^3}{9}=\frac{10^{2016}-1}{9}+\frac{2^3+1}{9}=\left(1+10+10^2+...+10^{2015}\right)+1\in N.\)

30 tháng 8 2016

\(10^{2016}\)= 1000...00(mình ko cần biết cso bao nhiêu cx 0, nó là bài đánh  lừa nhá bn)

\(2^3\)= 8

\(10^{2016}\) + 8= 10000...08

có 1+0+0+...+0+8=9. vậy số này chia hết cho 9

mà như bạn thấy số này là số dương nên số đó là số tự nhiên nhá