Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=3\left|1-2x\right|-5\)
Ta có: \(\left|1-2x\right|\ge0\forall x\)
\(\Rightarrow3.\left|1-2x\right|-5\ge-5\forall x\)
\(\Rightarrow A\ge-5\forall x\)
Dấu "=" xảy ra
\(\Leftrightarrow3.\left|1-2x\right|=0\Leftrightarrow1-2x=0\Leftrightarrow x=\dfrac{1}{2}\)
\(A=2x^2+2\sqrt{2}x+3\\ =2\left(x^2+\sqrt{2}x+\dfrac{3}{2}\right)\\ =2.\left(x^2+2.\dfrac{1}{\sqrt{2}}x+\dfrac{1}{2}+1\right)\\ =2.\left(x^2+2.\dfrac{1}{\sqrt{2}}x+\dfrac{1}{2}\right)+2\\ =2.\left(x+\dfrac{1}{\sqrt{2}}\right)^2+2\)
Ta có \(2.\left(x+\dfrac{1}{\sqrt{2}}\right)^2\ge0\forall x\)
\(2.\left(x+\dfrac{1}{\sqrt{2}}\right)^2+2\ge2\forall x\)
Dấu bằng xảy ra khi : \(x+\dfrac{1}{\sqrt{2}}=0\\ \Rightarrow x=\dfrac{-\sqrt{2}}{2}\)
Vậy \(Min_A=2\) khi \(x=\dfrac{-\sqrt{2}}{2}\)
x=2022
=>x+1=2023
A=x^50-x^49(x+1)+x^48(x+1)-...+x^2(x+1)-x(x+1)+x+2
=x^50-x^50-x^49+x^49+...+x^3+x^2-x^2-x+x+2
=2
a: A=x^2y(2/3+3+1)=14/3*x^2y
=14/3*3^2*(-1/7)
=-2*3=-6
Ta cóL
A=x(x+2y-5)+y(y-5x+5)+xy
=x2+2xy-5x+y2-5xy+5y+xy
=x2-2xy+y2-5x+5y
=(x-y)2-5(x-y)
=(x-y)(x-y-5)
=3.(3-5)
=-6