K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2018

\(A=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{16}\left(1+2+...+16\right)\)

\(=1+\frac{1}{2}\cdot\frac{2.3}{2}+\frac{1}{3}\cdot\frac{3.4}{2}+...+\frac{1}{16}\cdot\frac{16.17}{2}\)

\(=1+\frac{3}{2}+\frac{4}{2}+...+\frac{17}{2}\)

\(=\frac{2}{2}+\frac{3}{2}+...+\frac{17}{2}=\frac{1}{2}\left(2+3+...+17\right)=\frac{1}{2}\cdot\frac{16.19}{2}=4.19=76\)

1 tháng 12 2016

\(A=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+\frac{1}{4}\left(1+2+3+4\right)+...+\frac{1}{16}\left(1+2+3+...+16\right)\)

\(A=1+\frac{1+2}{2}+\frac{1+2+3}{3}+\frac{1+2+3+4}{4}+...+\frac{1+2+3+...+16}{16}\)

\(A=1+\frac{2\left(2+1\right):2}{2}+\frac{3\cdot\left(3+1\right):2}{3}+\frac{4\left(4+1\right):2}{4}+...+\frac{16\left(16+1\right):2}{16}\)

\(A=1+\frac{2+1}{2}+\frac{3+1}{2}+\frac{4+1}{2}+...+\frac{16+1}{2}\)

\(A=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+...+\frac{17}{2}\)

\(A=\frac{2+3+4+5+...+17}{2}\)

\(A=\frac{152}{2}\)

\(A=76\)

 

30 tháng 9 2021

A=\(2^2-9^3+4^{-2}.16-2.5^2\)
\(=4-729+1-50=-774\)
B=\(\left(2^3.2\right).\dfrac{1}{2}+3^{-2}.3^2-7.1+5\)
\(B=2^4.\dfrac{1}{2}+1-7+5=8+1-7+5=7\)
 

16 tháng 8 2024

 C = 2-3 + (52)3.5-3 + 4-3.16 - 2.32 - 105.(\(\dfrac{24}{51}\))0

C =  \(\dfrac{1}{8}\) + 56.5-3 + 4-3.42 - 2.9 - 105.1

C =  \(\dfrac{1}{8}\) + 53\(\dfrac{1}{4}\) - 18 - 105

C =  (\(\dfrac{1}{8}\) + \(\dfrac{1}{4}\))  - (105 - 125 + 18)

C = \(\dfrac{3}{8}\) - (-20 + 18)

C = \(\dfrac{3}{8}\)  + 2

C = \(\dfrac{19}{8}\)

8 tháng 8 2019

\(\left[18\frac{1}{6}-\left(0,06:7\frac{1}{2}+3\frac{2}{5}\cdot0,38\right)\right]:\left[16-2\frac{2}{3}\cdot4\frac{3}{4}\right]\)

\(< =>\left[18\frac{1}{6}-\left(\frac{1}{125}+\frac{323}{250}\right)\right]:\left[16-\frac{38}{3}\right]\)

\(< =>\left[18\frac{1}{6}-\frac{13}{10}\right]:\frac{10}{3}\)

\(< =>\frac{253}{15}:\frac{10}{3}\)

\(< =>\frac{253}{50}\)

27 tháng 1 2022

a, \(16-x^2=0\Leftrightarrow x=\pm4\)

b, Sửa đề: \(\left(x+1\right)^2+2\left|x-1\right|=0\)

<=> \(\hept{\begin{cases}\left(x+1\right)^2=0\\2\left|x-1\right|=0\end{cases}}\) <=> \(\hept{\begin{cases}x=-1\\x=1\end{cases}}\)

c, Sửa đề: \(\left(x+1\right)^2+\left(2y-3\right)^{10}\)

Giải tương tự câu c ta được \(\hept{\begin{cases}x=-1\\y=\frac{3}{2}\end{cases}}\)

d, Tương tự vậy, ta cũng tìm được \(\hept{\begin{cases}x=0\\y=1\end{cases}}\)

3 tháng 7 2019

a, \(A=\frac{12}{3.7}+\frac{12}{7.11}+...+\frac{12}{195.199}\)

       \(=3.\left(\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{195.199}\right)\)

       \(=3.\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{195}-\frac{1}{199}\right)\) 

       \(=3.\left(\frac{1}{3}-\frac{1}{199}\right)\)

       \(=3.\left(\frac{199}{597}-\frac{3}{597}\right)\)

       \(=3.\frac{196}{597}\)

       \(=\frac{196}{199}\)