Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(A=\dfrac{-1}{3}+1+\dfrac{1}{3}=1\)
\(B=\dfrac{2}{15}+\dfrac{5}{9}-\dfrac{6}{9}=\dfrac{2}{15}-\dfrac{1}{9}=\dfrac{18-15}{135}=\dfrac{3}{135}=\dfrac{1}{45}\)
\(C=\dfrac{-1}{5}+\dfrac{1}{4}-\dfrac{3}{4}=\dfrac{-1}{5}-\dfrac{1}{2}=\dfrac{-7}{10}\)
Bài 2:
a: \(=\dfrac{1}{5}+\dfrac{1}{2}+\dfrac{2}{5}-\dfrac{3}{5}+\dfrac{2}{21}-\dfrac{10}{21}+\dfrac{3}{20}\)
\(=\left(\dfrac{1}{5}+\dfrac{2}{5}-\dfrac{3}{5}\right)+\left(\dfrac{2}{21}-\dfrac{10}{21}\right)+\left(\dfrac{1}{2}+\dfrac{3}{20}\right)\)
\(=\dfrac{-8}{21}+\dfrac{13}{20}=\dfrac{113}{420}\)
b: \(B=\dfrac{21}{23}-\dfrac{21}{23}+\dfrac{125}{93}-\dfrac{125}{143}=\dfrac{6250}{13299}\)
Bài 3:
\(\dfrac{7}{3}-\dfrac{1}{2}-\left(-\dfrac{3}{70}\right)=\dfrac{7}{3}-\dfrac{1}{2}+\dfrac{3}{70}=\dfrac{490}{210}-\dfrac{105}{210}+\dfrac{9}{210}=\dfrac{394}{210}=\dfrac{197}{105}\)
\(\dfrac{5}{12}-\dfrac{3}{-16}+\dfrac{3}{4}=\dfrac{5}{12}+\dfrac{3}{16}+\dfrac{3}{4}=\dfrac{20}{48}+\dfrac{9}{48}+\dfrac{36}{48}=\dfrac{65}{48}\)
Bài 4:
\(\dfrac{3}{4}-x=1\)
\(\Rightarrow-x=1-\dfrac{3}{4}\)
\(\Rightarrow x=-\dfrac{1}{4}\)
Vậy: \(x=-\dfrac{1}{4}\)
\(x+4=\dfrac{1}{5}\)
\(\Rightarrow x=\dfrac{1}{5}-4\)
\(\Rightarrow x=-\dfrac{19}{5}\)
Vậy: \(x=-\dfrac{19}{5}\)
\(x-\dfrac{1}{5}=2\)
\(\Rightarrow x=2+\dfrac{1}{5}\)
\(\Rightarrow x=\dfrac{11}{5}\)
Vậy: \(x=\dfrac{11}{5}\)
\(x+\dfrac{5}{3}=\dfrac{1}{81}\)
\(\Rightarrow x=\dfrac{1}{81}-\dfrac{5}{3}\)
\(\Rightarrow x=-\dfrac{134}{81}\)
Vậy: \(x=-\dfrac{134}{81}\)
ta có:1/n(1+2+...+n)=1/n.n((n+1))/2=(n+1)/2
=>S=1+3/2+2+5/2+...+10=43
\(M=1+\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^3}-\frac{1}{3^4}+......+\frac{1}{3^{19}}-\frac{1}{3^{20}}\)
\(\Rightarrow\frac{1}{3}M=\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+\frac{1}{3^4}-\frac{1}{3^5}+.......+\frac{1}{3^{20}}-\frac{1}{3^{21}}\)
\(\Rightarrow\frac{1}{3}M+M=1+\frac{1}{3}+\frac{1}{3}-\frac{1}{3^{21}}\)
\(\Rightarrow\frac{4}{3}M=\frac{5}{3}-\frac{1}{3^{21}}\)\(\Rightarrow M=\frac{\frac{5}{3}-\frac{1}{3^{31}}}{\frac{4}{3}}\)
a) \(=\dfrac{157}{8}.\dfrac{12}{7}-\dfrac{61}{4}.\dfrac{12}{7}=\dfrac{12}{7}\left(\dfrac{157}{8}-\dfrac{61}{4}\right)=\dfrac{12}{7}.\dfrac{35}{8}=\dfrac{15}{2}\)
b) \(\dfrac{2}{5}.\dfrac{1}{3}-\dfrac{2}{15}\div\dfrac{1}{5}+\dfrac{3}{5}.\dfrac{1}{3}=\dfrac{1}{3}\left(\dfrac{2}{5}+\dfrac{3}{5}\right)-\dfrac{2}{15}.5=\dfrac{1}{3}.1-\dfrac{2}{3}=\dfrac{1}{3}-\dfrac{2}{3}=-\dfrac{1}{3}\)
c) \(=-\dfrac{80}{9}\)
\(\frac{1}{3}+\frac{2}{3}.-\frac{9}{20}\)
\(\frac{1}{3}+\frac{2.-9}{3.20}\)
\(\frac{1}{3}+-\frac{3}{10}\)
\(\frac{10}{30}+-\frac{3}{10}\)
\(\frac{1}{30}\)
3^0 x 3^1 x 3^2 x .... x 3^20 = 3^( 0 + 1 + 2 + .... + 20 )
= 3^210
C=1+2+22+23+...+220
2C=2+22+23+...+220+221
2C-C=(2+22+23+...+220+221)-(1+2+22+23+...+220)
C=221-1
C = 1 + 2 + 22 + 23 + ......+220
2.C = 2 + 22 + 23 +.......+220 + 221
2C - C = 221 - 1
C = 221 - 1