Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(1-\frac{2}{n.\left(n+1\right)}\)
=\(\frac{n.\left(n+1\right)-2}{n\left(n+1\right)}\)
=\(\frac{n^2+n-2}{n.\left(n+1\right)}\)
=\(\frac{\left(n^2-1\right)+\left(n-1\right)}{n.\left(n+1\right)}\)
=\(\frac{\left(n-1\right).\left(n+1\right)+\left(n-1\right)}{n.\left(n+1\right)}\)
=\(\frac{\left(n-1\right).\left(n+1+1\right)}{n.\left(n+1\right)}\)
=\(\frac{\left(n-1\right).\left(n+2\right)}{n.\left(n+1\right)}\)
=>\(1-\frac{2}{n.\left(n+1\right)}=\frac{\left(n-1\right).\left(n+2\right)}{n.\left(n+1\right)}\left(1\right)\)
Lại có: \(M=\left(1-\frac{2}{2.3}\right).\left(1-\frac{2}{3.4}\right).\left(1-\frac{2}{4.5}\right)....\left(1-\frac{2}{99.100}\right)\)
=> \(M=\left(1-\frac{2}{2.\left(2+1\right)}\right).\left(1-\frac{2}{3.\left(3+1\right)}\right).\left(1-\frac{2}{4.\left(4+1\right)}\right)....\left(1-\frac{2}{99.\left(99+1\right)}\right)\left(2\right)\)
Thay (1) vào (2) ta được:
\(M=\frac{\left(2-1\right).\left(2+2\right)}{2.\left(2+1\right)}.\frac{\left(3-1\right).\left(3+2\right)}{3.\left(3+1\right)}.\frac{\left(4-1\right).\left(4+2\right)}{4.\left(4+1\right)}...\frac{\left(99-1\right).\left(99+2\right)}{99.\left(99+1\right)}\)
=> \(M=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}....\frac{98.101}{99.100}\)
=> \(M=\frac{1.4.2.5.3.6....98.101}{2.3.3.4.4.5....99.100}\)
=> \(M=\frac{\left(1.2.3....98\right).\left(4.5.6....101\right)}{\left(2.3.4....99\right).\left(3.4.5....100\right)}\)
=> \(M=\frac{1.101}{99.3}\)
=> \(M=\frac{101}{297}\)
Vậy \(M=\frac{101}{297}\)
A=1.2+ 2.3+.......+99.100
Nhân cả 2 vế với 3, ta được:
3A=1.2.3+ 2.3.3+ 3.4.3+ 4.5.3+...... 99.100.3
= 1.2.3 + 2.3(4-1) + 3.4.(5-2) +...+ 99.100.(101-98)
= 1.2.3 + 2.3.4 -1.2.3 + 3.4.5-2.3.4 +...+ 99.100.101-98.99.100
= 99.100.101
----> A = (99.100.101):3
A = 333300
Vậy A=333300
\(\left(1+\frac{1}{2.3}\right)\left(1+\frac{1}{3.4}\right)\left(1+\frac{1}{4.5}\right)...\left(1+\frac{1}{99.100}\right)\)
\(=\left(1+\frac{1}{2}-\frac{1}{3}\right)\left(1+\frac{1}{3}-\frac{1}{4}\right)\left(1+\frac{1}{4}-\frac{1}{5}\right)...\left(1+\frac{1}{99}-\frac{1}{100}\right)\)
\(=1+\frac{1}{2}-\frac{1}{3}.1+\frac{1}{3}-\frac{1}{4}.1+\frac{1}{4}-\frac{1}{5}...1+\frac{1}{99}-\frac{1}{100}\)
\(=1+\frac{1}{2}-1.\left(\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(=1+\frac{1}{2}-1.\left(2\frac{1}{3}-2\frac{1}{4}-...-2\frac{1}{99}-\frac{1}{100}\right)\)
\(=1+\frac{1}{2}-1\left[2.\left(\frac{1}{3}-\frac{1}{4}-\frac{1}{5}-...-\frac{1}{99}\right)\right]-\frac{1}{100}\)
tới đây bí
\(B=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(B=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(B=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)
\(B=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
\(B< \frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\)
\(B< \frac{50}{60}\Leftrightarrow B< \frac{5}{6}\)
C1:
\(A=1.2+2.3+3.4+4.5+....+99.100\\ \Rightarrow3A=1.2\left(3-0\right)+2.3\left(4-1\right)+3.4\left(5-2\right)+....+99.100\left(101-98\right)\\ \Rightarrow3A=1.2.3-0.1.2+2.3.4-1.2.3+...+99.100.101-98.99.100\\ \Rightarrow3.A=99.100.101\\ \Rightarrow A=\frac{99.100.101}{3}=333300\)
\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)
\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(A=1-\dfrac{1}{100}=\dfrac{99}{100}\)
\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ A=1-\dfrac{1}{100}=\dfrac{99}{100}\)
A=3+100 VÌ TA SẼ GẠCH CÁC SỐ GIỐNG NHAU
A=103