K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2017

Câu 1: Ta có: A = \(x^3+y^3+3xy=x^3+y^3+3xy\times1=x^3+y^3+3xy\left(x+y\right)\)

\(=\left(x+y\right)^3=1^3=1\)

Câu 2: Ta có: \(B=x^3-y^3-3xy=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)

\(=x^2+xy+y^2-3xy=x^2-2xy+y^2=\left(x-y\right)^2=1^2=1\)

Câu 3: Ta có: \(C=x^3+y^3+3xy\left(x^2+y^2\right)-6x^2.y^2\left(x+y\right)\)

\(=x^3+y^3+3xy\left(x^2+2xy+y^2-2xy\right)+6x^2y^2\)

\(=x^3+y^3+3xy\left(x+y\right)^2-3xy.2xy+6x^2y^2\)

\(=x^3+y^3+3xy.1-6x^2y^2+6x^2y^3\)

\(=x^3+y^3+3xy\left(x+y\right)=\left(x+y\right)^3=1^3=1\)

20 tháng 11 2022

Sửa đề: x+y=1

\(A=\left(x+y\right)^3-3xy\left(x+y\right)+3xy\left[\left(x+y\right)^2-2xy\right]+6x^2y^2\)

\(=1-3xy+3xy\left[1-2xy\right]+6x^2y^2\)

=1

22 tháng 9 2019

Ta có: x^3 -3xy(x-y) -y^3 -x^2 + 2xy-y^2

= x^3 -y^3 - 3xy(x-y) -( x^2 -2xy+y^2)

= (x-y)(x^2+xy +y^2) - 3xy(x-y) -(x-y)^2

= (x-y)(x^2+xy+y^2 -3xy-x+y)

=11( x^2 -2xy+y^2 -x+y)

= 11[ (x-y)^2 -(x-y)]

= 11[ 11^2 -11]

= 11^3 -11^2=...

2 tháng 10 2015

 

\(A=2x^2+4xy-4x+2y^2-10xy+4y+2xy\)

\(A=\left(2x^2-4xy+2y^2\right)-\left(4x-4y\right)=2\left(x^2-2xy+y^2\right)-4\left(x-y\right)\)

\(A=2\left(x-y\right)^2-4\left(x-y\right)=2.3^2-4.3=6\)

10 tháng 8 2017

\(A=x^3+y^3-2x^2-2y^2+3xy\left(x+y\right)-4xy+3\left(x+y\right)+10\)

\(A=\left(x^3+y^3\right)-2\left(x^2+y^2\right)+3xy\left(x+y\right)-4xy+3\left(x+y\right)+10\)

\(A=\left(x+y\right)^3-3xy\left(x+y\right)-2\left(\left(x+y\right)^2-2xy\right)+3xy\left(x+y\right)-4xy+3\left(x+y\right)+10\)

\(A=\left(x+y\right)^3-3xy\left(x+y\right)-2\left(x+y\right)^2+4xy+3xy\left(x+y\right)-4xy+3\left(x+y\right)+10\)

\(A=\left(5\right)^3-3xy\left(5\right)-2\left(5\right)^2+4xy+3xy\left(5\right)-4xy+3\left(5\right)+10\)

\(A=125-15xy-50+4xy+15xy-4xy+15+10\)

\(A=100\)

27 tháng 6 2018

hepl me

27 tháng 6 2018

ai trả lời đúng mình sẽ k nha

29 tháng 7 2018

C1:  \(B=x^3+3xy+y^3\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)+3xy\)

\(=\left(x+y\right)^3-3xy\left(x+y-1\right)\)

Thay \(x+y=1\)ta được:

\(B=1^3-3xy\left(1-1\right)=1\)

C2: \(x+y=1\)\(\Rightarrow\)\(x=1-y\)

\(B=x^3+3xy+y^3=\left(1-y\right)^3+3\left(1-y\right)y+y^3\)

\(=1-3y+3y^2-y^3+3y-3y^2+y^3=1\)