Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{2^{20}.27^3+30.4^9.9^4}{6^9.4^5+12^{10}}=\dfrac{2^{20}.3^9+3.2.5.2^{18}.3^8}{2^9.3^9+2^{10}+2^{20}.3^{10}}\)
\(=\dfrac{2^{19}.3^9.\left(2+5\right)}{2^9.3^9.\left(1+2^{11}.3\right)+2^{10}}=\dfrac{2^{10}.\left(2+5\right)}{1+2^{10}.\left(2.3+1\right)}\)
\(=\dfrac{2^{10}.7}{2^{10}.7+1}=\dfrac{7168}{7169}\)
Chúc bạn học tốt!!!
\(\dfrac{2^{20}.27^3+30.4^9.9^4}{6^9.4^5+12^{10}}=\dfrac{2^{20}.3^9+2.3.5.2^{18}.3^8}{2^9.3^9+2^{20}.3^{10}}=\dfrac{2^{20}.3^9+5.2^{19}.3^9}{2^9.3^9+2^{20}.3^{10}}=\dfrac{2^9.3^9\left(2^{11}+5.2^{10}\right)}{2^9.3^9\left(1+2^{11}.3\right)}\)
\(\dfrac{2^{11}+5.2^{10}}{1+2^{11}.3}\)
tới bc này chiu :))
\(\dfrac{2^{20}\cdot27^3+30\cdot4^9\cdot9^4}{6^9\cdot4^5+12^{10}}\\ =\dfrac{2^{20}\cdot\left(3^3\right)^3+\left(2\cdot3\cdot5\right)\cdot\left(2^2\right)^9\cdot\left(3^2\right)^4}{\left(2\cdot3\right)^9\cdot\left(2^2\right)^5+\left(3\cdot4\right)^{10}}\\ =\dfrac{2^{20}\cdot3^9+2\cdot3\cdot5\cdot2^{18}\cdot3^8}{2^9\cdot3^9\cdot2^{10}+3^{10}\cdot4^{10}}\\ =\dfrac{2^{20}\cdot3^9+2^{19}\cdot3^9\cdot5}{2^{19}\cdot3^9+3^{10}\cdot2^{20}}\\ =\dfrac{2^{19}\cdot3^9\left(2+5\right)}{2^{19}\cdot3^9\left(1+2\cdot3\right)}\\ =\dfrac{2^{19}\cdot3^9\cdot7}{2^{19}\cdot3^9\cdot7}\\ =1\)
\(\frac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}\)
\(=\frac{2^{19}.\left(3^3\right)^3+3.5.\left(2^2\right)^9.\left(3^2\right)^4}{\left(2.3\right)^9.2^{10}+\left(3.2^2\right)^{10}}\)
\(=\frac{2^{19}.3^9+5.2^{18}.3^9}{2^{19}.3^9+3^{10}.2^{20}}\)
\(=\frac{2^{18}.3^9\left(2+5\right)}{2^{19}.3^9\left(1+3.2\right)}\)
\(=\frac{7}{2.7}=\frac{1}{2}\)
\(\frac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}=\frac{2^{19}.3^9+5.2^{18}.3^9}{2^{10}.6^9+2^{10}.6^{10}}=\frac{2^{18}.3^9.\left(2+5\right)}{2^{10}.6^9\left(1+6\right)}=\frac{2^{18}.3^9.7}{2^{10}.6^9.7}=2^8.\left(\frac{1}{2}\right)^9=2^8.\frac{9}{2^9}=\frac{1}{2}.9=\frac{9}{2}\)Vậy C=\(\frac{9}{2}\)
\(=\dfrac{2^{19}\cdot3^9-3\cdot3^8\cdot2^{18}\cdot5}{2^{19}\cdot3^9+2^{20}\cdot3^{10}}=\dfrac{-3^{10}\cdot2^{18}}{2^{19}\cdot3^9\cdot7}=-\dfrac{3}{14}\)
\(=\dfrac{2^{19}\cdot3^9+2^{18}\cdot3^9\cdot5}{2^{19}\cdot3^9+2^{20}\cdot3^{10}}=\dfrac{2^{18}\cdot3^9\left(5+2\right)}{2^{19}\cdot3^9\left(1+2\cdot3\right)}=\dfrac{1}{2}\)
Ta có:
\(\frac{2^{20}\cdot27^3+30\cdot4^9\cdot9^4}{6^9\cdot4^5+12^{10}}=\frac{2^{20}\cdot\left[3^3\right]^3+2\cdot3\cdot5\cdot\left[2^2\right]^9\cdot\left[3^2\right]^4}{2^9\cdot3^9\cdot\left[2^2\right]^5+3^{10}\cdot\left[2^2\right]^{10}}=\frac{2^{20}\cdot3^{3\cdot3}+2\cdot3\cdot5\cdot2^{2\cdot9}\cdot3^{2\cdot4}}{2^9\cdot3^9\cdot2^{2\cdot5}+3^{10}\cdot2^{2\cdot10}}\)
\(=\frac{2^{20}\cdot3^9+2\cdot3\cdot5\cdot2^{18}\cdot3^8}{2^9\cdot3^9\cdot2^{10}+3^{10}\cdot2^{20}}=\frac{2^{20}\cdot3^9+2^{19}\cdot3^9\cdot5}{2^{19}\cdot3^9+3^{10}\cdot2^{20}}=\frac{2^{19}\cdot3^9\left[2+5\right]}{2^{19}\cdot3^9\left[1+3\cdot2\right]}=\frac{2+5}{1+6}=\frac{7}{7}=1\)