K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2018

Vì 300 và 600 là hai góc phụ nhau nên  sin 30 0 = cos 60 0 sin 60 0 = cos 30 0

⇒ P = cos 30 ∘ cos 60 ∘ − sin 30 ∘ sin 60 ∘ = cos 30 ∘ cos 60 ∘ − cos 60 ∘ cos 30 ∘ = 0.  

Chọn D.

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) \(M = \sin {45^o}.\cos {45^o} + \sin {30^o}\)

Ta có: \(\left\{ \begin{array}{l}\sin {45^o} = \cos {45^o} = \frac{{\sqrt 2 }}{2};\;\\\sin {30^o} = \frac{1}{2}\end{array} \right.\)

Thay vào M, ta được: \(M = \frac{{\sqrt 2 }}{2}.\frac{{\sqrt 2 }}{2} + \frac{1}{2} = \frac{2}{4} + \frac{1}{2} = 1\)

b) \(N = \sin {60^o}.\cos {30^o} + \frac{1}{2}.\sin {45^o}.\cos {45^o}\)

Ta có: \(\sin {60^o} = \frac{{\sqrt 3 }}{2};\;\;\cos {30^o} = \frac{{\sqrt 3 }}{2};\;\sin {45^o} = \frac{{\sqrt 2 }}{2};\, \cos {45^o}= \frac{{\sqrt 2 }}{2}\)

Thay vào N, ta được: \(N = \frac{{\sqrt 3 }}{2}.\frac{{\sqrt 3 }}{2} + \frac{1}{2}.\frac{{\sqrt 2 }}{2}.\frac{{\sqrt 2 }}{2} = \frac{3}{4} + \frac{1}{4} = 1\)

c) \(P = 1 + {\tan ^2}{60^o}\)

Ta có: \(\tan {60^o} = \sqrt 3 \)

Thay vào P, ta được: \(Q = 1 + {\left( {\sqrt 3 } \right)^2} = 4.\)

d) \(Q = \frac{1}{{{{\sin }^2}{{120}^o}}} - {\cot ^2}{120^o}.\)

Ta có: \(\sin {120^o} = \frac{{\sqrt 3 }}{2};\;\;\cot {120^o} = \frac{{ - 1}}{{\sqrt 3 }}\)

Thay vào P, ta được: \(Q = \frac{1}{{{{\left( {\frac{{\sqrt 3 }}{2}} \right)}^2}}} - \;{\left( {\frac{{ - 1}}{{\sqrt 3 }}} \right)^2} = \frac{1}{{\frac{3}{4}}} - \;\frac{1}{3} = \;\frac{4}{3} - \;\frac{1}{3} = 1.\)

21 tháng 9 2023

a) \(A=2sin30^o+3cos45^o-sin60^0\)

\(\Leftrightarrow A=2.\dfrac{1}{2}+3.\dfrac{\sqrt[]{2}}{2}-\dfrac{\sqrt[]{3}}{2}\)

\(\Leftrightarrow A=1+\dfrac{3\sqrt[]{2}}{2}-\dfrac{\sqrt[]{3}}{2}\)

\(\Leftrightarrow A=1+\dfrac{\sqrt[]{3}\left(\sqrt[]{6}-1\right)}{2}\)

b) \(B=3cos30^o+3sin45^o-cos45^o\)

\(\Leftrightarrow B=3\dfrac{\sqrt[]{3}}{2}+3\dfrac{\sqrt[]{2}}{2}-\dfrac{\sqrt[]{2}}{2}\)

\(\Leftrightarrow B=\dfrac{3\sqrt[]{3}}{2}+\dfrac{2\sqrt[]{2}}{2}\)

\(\Leftrightarrow B=\dfrac{3\sqrt[]{3}}{2}+\sqrt[]{2}\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a)

Đặt  \(A = \left( {2\sin {{30}^o} + \cos {{135}^o} - 3\tan {{150}^o}} \right).\left( {\cos {{180}^o} - \cot {{60}^o}} \right)\)

Ta có: \(\left\{ \begin{array}{l}\cos {135^o} =  - \cos {45^o};\cos {180^o} =  - \cos {0^o}\\\tan {150^o} =  - \tan {30^o}\end{array} \right.\)

\( \Rightarrow A = \left( {2\sin {{30}^o} - \cos {{45}^o} + 3\tan {{30}^o}} \right).\left( { - \cos {0^o} - \cot {{60}^o}} \right)\)

Sử dụng bảng giá trị lượng giác của một số góc đặc biệt, ta có:

\(\left\{ \begin{array}{l}\sin {30^o} = \frac{1}{2};\tan {30^o} = \frac{{\sqrt 3 }}{3}\\\cos {45^o} = \frac{{\sqrt 2 }}{2};\cos {0^o} = 1;\cot {60^o} = \frac{{\sqrt 3 }}{3}\end{array} \right.\)

\( \Rightarrow A = \left( {2.\frac{1}{2} - \frac{{\sqrt 2 }}{2} + 3.\frac{{\sqrt 3 }}{3}} \right).\left( { - 1 - \frac{{\sqrt 3 }}{3}} \right)\)

\(\begin{array}{l} \Leftrightarrow A =  - \left( {1 - \frac{{\sqrt 2 }}{2} + \sqrt 3 } \right).\left( {1 + \frac{{\sqrt 3 }}{3}} \right)\\ \Leftrightarrow A =  - \frac{{2 - \sqrt 2  + 2\sqrt 3 }}{2}.\frac{{3 + \sqrt 3 }}{3}\\ \Leftrightarrow A =  - \frac{{\left( {2 - \sqrt 2  + 2\sqrt 3 } \right)\left( {3 + \sqrt 3 } \right)}}{6}\\ \Leftrightarrow A =  - \frac{{6 + 2\sqrt 3  - 3\sqrt 2  - \sqrt 6  + 6\sqrt 3  + 6}}{6}\\ \Leftrightarrow A =  - \frac{{12 + 8\sqrt 3  - 3\sqrt 2  - \sqrt 6 }}{6}.\end{array}\)

b)

Đặt  \(B = {\sin ^2}{90^o} + {\cos ^2}{120^o} + {\cos ^2}{0^o} - {\tan ^2}60 + {\cot ^2}{135^o}\)

Ta có: \(\left\{ \begin{array}{l}\cos {120^o} =  - \cos {60^o}\\\cot {135^o} =  - \cot {45^o}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{\cos ^2}{120^o} = {\cos ^2}{60^o}\\{\cot ^2}{135^o} = {\cot ^2}{45^o}\end{array} \right.\)

\( \Rightarrow B = {\sin ^2}{90^o} + {\cos ^2}{60^o} + {\cos ^2}{0^o} - {\tan ^2}60 + {\cot ^2}{45^o}\)

Sử dụng bảng giá trị lượng giác của một số góc đặc biệt, ta có:

\(\left\{ \begin{array}{l}\cos {0^o} = 1;\;\;\cot {45^o} = 1;\;\;\cos {60^o} = \frac{1}{2}\\\tan {60^o} = \sqrt 3 ;\;\;\sin {90^o} = 1\end{array} \right.\)

\( \Rightarrow B = {1^2} + {\left( {\frac{1}{2}} \right)^2} + {1^2} - {\left( {\sqrt 3 } \right)^2} + {1^2}\)

\( \Leftrightarrow B = 1 + \frac{1}{4} + 1 - 3 + 1 = \frac{1}{4}.\)

c

Đặt  \(C = \cos {60^o}.\sin {30^o} + {\cos ^2}{30^o}\)

Sử dụng bảng giá trị lượng giác của một số góc đặc biệt, ta có:

\(\sin {30^o} = \frac{1}{2};\;\;\cos {30^o} = \frac{{\sqrt 3 }}{2};\;\cos {60^o} = \frac{1}{2}\;\)

\( \Rightarrow C = \frac{1}{2}.\frac{1}{2} + {\left( {\;\frac{{\sqrt 3 }}{2}} \right)^2} = \frac{1}{4} + \frac{3}{4} = 1.\)

27 tháng 10 2023

a: loading...

b: \(B=3-sin^290^0+2\cdot cos^260^0-3\cdot tan^245^0\)

\(=3-1+2\cdot\left(\dfrac{1}{2}\right)^2-3\cdot1^2\)

\(=2-3+2\cdot\dfrac{1}{4}=-1+\dfrac{1}{2}=-\dfrac{1}{2}\)

c: \(C=sin^245^0-2\cdot sin^250^0+3\cdot cos^245^0-2\cdot sin^240^0+4\cdot tan55\cdot tan35\)

\(=\left(\dfrac{\sqrt{2}}{2}\right)^2+3\cdot\left(\dfrac{\sqrt{2}}{2}\right)^2-2\cdot\left(sin^250^0+sin^240^0\right)+4\)

\(=\dfrac{1}{2}+3\cdot\dfrac{1}{2}-2+4\)

\(=2-2+4=4\)

NV
10 tháng 4 2019

1/

\(tanx=\frac{sinx}{cosx}=\frac{sin^2x}{sinx.cosx}=\frac{2sin^2x}{2sinx.cosx}\)

\(=\frac{2\left(\frac{1-cos2x}{2}\right)}{sin2x}=\frac{1-cos2x}{sin2x}\)

2/

\(\frac{sin\left(60-x\right)cos\left(30-x\right)+cos\left(60-x\right)sin\left(30-x\right)}{sin4x}=\frac{sin\left(60-x+30-x\right)}{sin4x}=\frac{sin\left(90-2x\right)}{2sin2x.cos2x}\)

\(=\frac{cos2x}{2sin2x.cos2x}=\frac{1}{2sin2x}\)

3/

\(4cos\left(60+a\right)cos\left(60-a\right)+2sin^2a\)

\(=2\left(cos\left(60+a+60-a\right)+cos\left(60+a-60+a\right)\right)+2sin^2a\)

\(=2cos120+2cos2a+2\left(\frac{1-cos2a}{2}\right)\)

\(=-1+2cos2a+1-cos2a=cos2a\)

23 tháng 3 2022

A=a2sin⁡90∘+b2cos⁡90∘+c2cos⁡180∘

 0 

 

B=3−sin2⁡90∘+2cos2⁡60∘−3tan2⁡45∘.

= 3 - 1 + 1/2 - 3 = -1/2

undefined

23 tháng 3 2022

What did you see at the zoo?

 I saw crocodiles.

NV
21 tháng 4 2019

Toàn góc quen thuộc, cứ ném vào máy tính cho nó xử thôi:

\(P=\frac{\sqrt{3}.\frac{\sqrt{3}}{3}-\frac{1}{2}.\sqrt{3}-2\sqrt{2}.\frac{\sqrt{2}}{2}}{\sqrt{6}.1.\frac{\sqrt{2}}{2}.\frac{\sqrt{3}}{2}}=-\frac{2+\sqrt{3}}{3}\)

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Ta có:

\(\begin{array}{l}\cos {30^o} = \sin \left( {{{90}^o} - {{30}^o}} \right) = \sin {60^o} = \frac{{\sqrt 3 }}{2};\\\sin {150^o} = \sin \left( {{{180}^o} - {{150}^o}} \right) = \sin {30^o} = \frac{1}{2};\\\tan {135^o} =  - \tan \left( {{{180}^o} - {{135}^o}} \right) =  - \tan {45^o} =  - 1\end{array}\)

\( \Rightarrow E = 2.\frac{{\sqrt 3 }}{2} + \frac{1}{2} - 1 = \sqrt 3  - \frac{1}{2}.\)

AH
Akai Haruma
Giáo viên
17 tháng 2 2021

Lời giải:

Đặt $a-\frac{b}{2}=x; \frac{a}{2}-b=y$ thì $45^0< x< 180^0; -45^0< y< 90^0$

$\cos x=\frac{-1}{4}; 45^0< x< 180^0$ nên $\sin x=\frac{\sqrt{15}}{4}$

$\sin y=\frac{1}{3}; -45^0< y< 90^0$ nên $\cos y=\frac{2\sqrt{2}}{3}$

\(P=72\cos (2x-2y)+49=72[2\cos ^2(x-y)-1]+49=144\cos ^2(x-y)-23\)

\(=144(\cos x\cos y+\sin x\sin y)^2-23=-4\sqrt{30}\)

Đáp án C.