K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2017

Giải:

\(\dfrac{1}{\left(k+1\right)\sqrt{k}+k\left(\sqrt{k+1}\right)}\) \(=\dfrac{\left(k+1\right)\sqrt{k}-k\left(\sqrt{k+1}\right)}{\left(k+1\right)^2k-k^2\left(k+1\right)}\)

\(=\dfrac{\left(k+1\right)\sqrt{k}-k\left(\sqrt{k+1}\right)}{\left(k+1\right)k\left(k+1-k\right)}=\dfrac{1}{\sqrt{k}}-\dfrac{1}{\sqrt{k+1}}\)

Áp dụng vào biểu thức ta có:

\(\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}\) \(+...+\dfrac{1}{2015\sqrt{2014}+2014\sqrt{2015}}\)

\(=\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{2014}}-\dfrac{1}{\sqrt{2015}}\)

\(=1-\dfrac{1}{\sqrt{2015}}\)

30 tháng 9 2018

b,\(B=\sqrt{1+2014^2+\dfrac{2014^2}{2015^2}}+\dfrac{2014}{2015}\)

Ta có :\(\left(2014+1\right)^2=2014^2+1+2.2014\)

\(\Rightarrow2014^2+1=2015^2-2.2014\)

\(\Rightarrow B=\sqrt{2015^2-2.2014+\left(\dfrac{2014}{2015}\right)^2}+\dfrac{2014}{2015}\)

\(=\sqrt{\left(2015-\dfrac{2014}{2015}\right)^2}+\dfrac{2014}{2015}\)

\(=2015-\dfrac{2014}{2015}+\dfrac{2014}{2015}\)

\(=2015\)

Vậy B=2015

c: Ta có: \(\sqrt{\left(4+\sqrt{10}\right)^2}-\sqrt{\left(4-\sqrt{10}\right)^2}\)

\(=4+\sqrt{10}-4+\sqrt{10}\)

\(=2\sqrt{10}\)

d: Ta có: \(\sqrt{3-2\sqrt{2}}+\sqrt{6-4\sqrt{2}}+\sqrt{9-4\sqrt{2}}\)

\(=\sqrt{2}-1+2-\sqrt{2}+2\sqrt{2}-1\)

\(=2\sqrt{2}\)

30 tháng 9 2021

a) \(=\left(2\sqrt{3}\right)^2-\left(3\sqrt{2}\right)^2=12-18=-6\)

b) \(=\dfrac{\sqrt{2013}+\sqrt{2014}}{2013-2014}-\dfrac{\sqrt{2014}+\sqrt{2015}}{2014-2015}=-\sqrt{2013}-\sqrt{2014}+\sqrt{2014}-\sqrt{2015}=-\sqrt{2013}-\sqrt{2015}\)

c) \(=4+\sqrt{10}-4+\sqrt{10}=2\sqrt{10}\)

d) \(=\sqrt{\left(\sqrt{2}-1\right)^2}+\sqrt{\left(2-\sqrt{2}\right)^2}+\sqrt{\left(2\sqrt{2}-1\right)^2}=\sqrt{2}-1+2-\sqrt{2}+2\sqrt{2}-1=2\sqrt{2}\)

15 tháng 10 2016

Chứng minh \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\) rồi áp dụng với n = 1,2,....,2014

15 tháng 10 2016

ki+e

n ejmfjnhcy

12 tháng 9 2018

Với \(\forall a\in N\left(a\ne0\right)\cdot\),ta có:\(\sqrt{1+a^2+\dfrac{a^2}{\left(a+1\right)^2}}+\dfrac{a}{a+1}=\sqrt{\dfrac{\left(a^2+1\right)\left(a^2+2a+1\right)+a^2}{\left(a+1\right)^2}}+\dfrac{a}{a+1}=\sqrt{\dfrac{\left(a^2+1\right)^2+2a\left(a^2+1\right)+a^2}{\left(a+1\right)^2}}+\dfrac{a}{a+1}=\sqrt{\dfrac{\left(a^2+a+1\right)^2}{\left(a+1\right)^2}}+\dfrac{a}{a+1}=\dfrac{a^2+a+1}{a+1}+\dfrac{a}{a+1}=\dfrac{\left(a+1\right)^2}{a+1}=a+1\in Z\)(Vì a là số tự nhiên)

Thay a=2014 vào thì ta có: B=2014+1=2015 là số nguyên

25 tháng 10 2022

a: \(P=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{2\sqrt{x}}{\left(x+1\right)\left(1-\sqrt{x}\right)}\right):\dfrac{x+1-2\sqrt{x}}{x+1}\)

\(=\dfrac{x+1-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{x-2\sqrt{x}+1}=\dfrac{1}{\sqrt{x}-1}\)

b: Khi x=2015-2 căn 2014 thì 

\(P=\dfrac{1}{\sqrt{2014}-1-1}=\dfrac{1}{\sqrt{2014}-2}=\dfrac{\sqrt{2014}+2}{2010}\)

c: Để P>=1 thì P-1>=0

=>(1-căn x+1)/căn x-1>=0

=>(căn x-2)/(căn x-1)<=0

=>1<căn x<=2

=>1<x<=4