\(\sqrt{1+2014^2+\dfrac{2014^2}{2015^2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2018

Với \(\forall a\in N\left(a\ne0\right)\cdot\),ta có:\(\sqrt{1+a^2+\dfrac{a^2}{\left(a+1\right)^2}}+\dfrac{a}{a+1}=\sqrt{\dfrac{\left(a^2+1\right)\left(a^2+2a+1\right)+a^2}{\left(a+1\right)^2}}+\dfrac{a}{a+1}=\sqrt{\dfrac{\left(a^2+1\right)^2+2a\left(a^2+1\right)+a^2}{\left(a+1\right)^2}}+\dfrac{a}{a+1}=\sqrt{\dfrac{\left(a^2+a+1\right)^2}{\left(a+1\right)^2}}+\dfrac{a}{a+1}=\dfrac{a^2+a+1}{a+1}+\dfrac{a}{a+1}=\dfrac{\left(a+1\right)^2}{a+1}=a+1\in Z\)(Vì a là số tự nhiên)

Thay a=2014 vào thì ta có: B=2014+1=2015 là số nguyên

16 tháng 1 2016

\(\sqrt{2014^2\left(\frac{1}{2014^2}+1+\frac{1}{2015^2}\right)}-\frac{2014}{2015}=2014\sqrt{\left(1+\frac{1}{2014}+\frac{1}{2015}\right)^2}-\frac{2014}{2015}\)

\(=2014\left(1+\frac{1}{2014}+\frac{1}{2015}\right)-\frac{2014}{2015}=2015\)

16 tháng 1 2016

\(B=\sqrt{2014^2\left(1+\frac{1}{2014}-\frac{1}{2015}\right)^2}+\frac{2014}{2015}=2015\)

2 tháng 7 2017

Giải:

\(\dfrac{1}{\left(k+1\right)\sqrt{k}+k\left(\sqrt{k+1}\right)}\) \(=\dfrac{\left(k+1\right)\sqrt{k}-k\left(\sqrt{k+1}\right)}{\left(k+1\right)^2k-k^2\left(k+1\right)}\)

\(=\dfrac{\left(k+1\right)\sqrt{k}-k\left(\sqrt{k+1}\right)}{\left(k+1\right)k\left(k+1-k\right)}=\dfrac{1}{\sqrt{k}}-\dfrac{1}{\sqrt{k+1}}\)

Áp dụng vào biểu thức ta có:

\(\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}\) \(+...+\dfrac{1}{2015\sqrt{2014}+2014\sqrt{2015}}\)

\(=\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{2014}}-\dfrac{1}{\sqrt{2015}}\)

\(=1-\dfrac{1}{\sqrt{2015}}\)

30 tháng 9 2018

b,\(B=\sqrt{1+2014^2+\dfrac{2014^2}{2015^2}}+\dfrac{2014}{2015}\)

Ta có :\(\left(2014+1\right)^2=2014^2+1+2.2014\)

\(\Rightarrow2014^2+1=2015^2-2.2014\)

\(\Rightarrow B=\sqrt{2015^2-2.2014+\left(\dfrac{2014}{2015}\right)^2}+\dfrac{2014}{2015}\)

\(=\sqrt{\left(2015-\dfrac{2014}{2015}\right)^2}+\dfrac{2014}{2015}\)

\(=2015-\dfrac{2014}{2015}+\dfrac{2014}{2015}\)

\(=2015\)

Vậy B=2015

2 tháng 11 2017

a,a=b+1

suy ra a-b=1 suy ra(\(\sqrt{a}+\sqrt{b}\))(\(\sqrt{a}-\sqrt{b}\))=1

suy ra \(\sqrt{a}-\sqrt{b}\)=\(\frac{1}{\sqrt{a}+\sqrt{b}}\)(1)

vì a=b+1 suy ra a>b suy ra \(\sqrt{a}>\sqrt{b}\)suy ra \(\sqrt{a}+\sqrt{b}>2\sqrt{b}\)

suy ra \(\frac{1}{\sqrt{a}+\sqrt{b}}< \frac{1}{2\sqrt{b}}\)(2)

từ (1) ,(2) suy ra\(\sqrt{a}-\sqrt{b}< \frac{1}{2\sqrt{b}}\)suy ra \(2\left(\sqrt{a}-\sqrt{b}\right)< \frac{1}{\sqrt{b}}\)(*)

ta lại có b+1=c+2 suy ra b-c =1 suy ra\(\left(\sqrt{b}-\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)=1\)

suy ra \(\sqrt{b}-\sqrt{c}=\frac{1}{\sqrt{b}+\sqrt{c}}\)(3)

vì b>c suy ra \(\sqrt{b}>\sqrt{c}\) suy ra \(\sqrt{b}+\sqrt{c}>2\sqrt{c}\)

suy ra \(\frac{1}{\sqrt{b}+\sqrt{c}}< \frac{1}{2\sqrt{c}}\)(4)

Từ (3),(4) suy ra \(\sqrt{b}-\sqrt{c}< \frac{1}{2\sqrt{c}}\) suy ra\(2\left(\sqrt{b}+\sqrt{c}\right)< \frac{1}{\sqrt{c}}\)(**)

từ (*),(**) suy ra đccm

25 tháng 11 2017

Ta có : \(\frac{2014}{\sqrt{2015}}\)+ \(\frac{2015}{\sqrt{2014}}\) = \(\frac{2015-1}{\sqrt{2015}}\) + \(\frac{2014+1}{\sqrt{2014}}\)

= \(\sqrt{2015}\) + \(\sqrt{2014}\) + \(\frac{1}{\sqrt{2014}}\) - \(\frac{1}{\sqrt{2015}}\)

\(\sqrt{2014}\) < \(\sqrt{2015}\) \(\Rightarrow \) \(\frac{1}{\sqrt{2014}}\)>\(\frac{1}{\sqrt{2015}}\) \(\Rightarrow \) \(\frac{1}{\sqrt{2014}}\)-\(\frac{1}{\sqrt{2015}}\) > 0

Nên \(\sqrt{2015}\) + \(\sqrt{2014}\) + \(\frac{1}{\sqrt{2014}}\) - \(\frac{1}{\sqrt{2015}}\) > \(\sqrt{2015}\) + \(\sqrt{2014}\)

Hay \(\frac{2014}{\sqrt{2015}}\)+ \(\frac{2015}{\sqrt{2014}}\) > ​\(\sqrt{2014} + \sqrt{2015}\)

Ta có \(2015^2=\left(2014+1\right)^2=2014^2+2.2014+1\) 

=> \(2014^2+1=2015^2-2.2014\) 

=> \(B=\sqrt{1+2014^2+\frac{2014^2}{2015^2}}+\frac{2014}{2015}\) 

\(\sqrt{2015^2-2.2014+\frac{2014^2}{2015^2}}+\frac{2014}{2015}\) 

\(\sqrt{\left(2015-\frac{2014}{2015}\right)^2}+\frac{2014}{2015}\) = \(2015-\frac{2014}{2015}+\frac{2014}{2015}\) 

\(2015\) là số nguyên

=> đpcm

29 tháng 9 2018

Đặt: n=2014

Ta có: \(1+n^2+\left(\frac{n}{n+1}\right)^2=\frac{\left(n+1\right)^2+n^2\left(n+1\right)^2+n^2}{\left(n+1\right)^2}\)

\(=\frac{\left(n+1\right)^2+n^2\left(n^2+2n+2\right)}{\left(n+1\right)^2}=\frac{\left(n+1\right)^2+2n^2\left(n+1\right)+n^4}{\left(n+1\right)^2}\)

\(=\frac{\left(n^2+n+1\right)^2}{\left(n+1\right)^2}=\left(\frac{n\left(n+1\right)+1}{n+1}\right)^2=\left(n+\frac{1}{n+1}\right)^2\)

\(\Rightarrow\sqrt{1+n^2+\left(\frac{n}{n+1}\right)^2}=n+\frac{1}{n+1}\)

\(\Rightarrow B=2014+\frac{1}{2015}+\frac{2014}{2015}=2015\)

30 tháng 10 2017

a) Ta có: \(\dfrac{2014}{\sqrt{2015}}+\dfrac{2015}{\sqrt{2014}}=\)

\(\dfrac{2015-1}{\sqrt{2015}}+\dfrac{2014+1}{\sqrt{2014}}=\sqrt{2015}-\dfrac{1}{\sqrt{2015}}+\sqrt{2014}+\dfrac{1}{\sqrt{2014}}\)

\(\left(\dfrac{1}{\sqrt{2014}}-\dfrac{1}{\sqrt{2015}}>0\right)\)\(>\sqrt{2014}+\sqrt{2015}\)

Vậy \(\dfrac{2014}{\sqrt{2015}}+\dfrac{2015}{\sqrt{2014}}>\sqrt{2014}+\sqrt{2015}\)