Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{1}{16}+\frac{6}{16.26}+\frac{6}{26.36}+\frac{6}{36.46}+...+\frac{6}{2006.2016}\) =\(B=\frac{1}{16}+\frac{3}{5}\left(\frac{10}{16.26}+\frac{10}{26.36}+\frac{10}{36.46}+...+\frac{10}{2006.2016}\right)\)
\(B=\frac{1}{16}+\frac{3}{5}\left(\frac{1}{16}-\frac{1}{26}+\frac{1}{26}-\frac{1}{36}+\frac{1}{36}-\frac{1}{46}+...+\frac{1}{2006}-\frac{1}{2016}\right)\)
\(B=\frac{1}{16}+\frac{3}{5}\left(\frac{1}{16}-\frac{1}{2016}\right)\)
đến đây thì ổn rồi
ai nhanh giup minh di roi minh cho nick "lien quan mobile" rank vang
B=1/16+ 6/16.26+ 6/26.36+ ..................+ 6/2006.2016
B=1/16+ 6. (1/16.26+ 1/26.36 +.................+ 1/2006.2016)
10B=1/16+6.(1/16- 1/2016)
10B=7.1/16 - 1/336
10B=7/16 - 1/336
10B=73/168
B=73/1680
làm hơi tắt bạn cố hiểu nhé
x-y-z=0=>x=y+z
=>z=x-y;=>y=x-z
\(=>B=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1-\frac{y}{z}\right)=\left(1-\frac{x-y}{x}\right)\cdot\left(1-\frac{y+z}{y}\right)\cdot\left(1+\frac{x-z}{z}\right)\)
Câu a cậu ghi sai đầu bài rồi hay sao í! phải là \(\frac{6}{36.46}\) chứ
\(B=\frac{1}{16}+\frac{6}{16.26}+\frac{6}{26.36}+....+\frac{6}{2006.2016}\)
\(=\frac{6}{6.16}+\frac{6}{16.26}+\frac{6}{26.36}+....+\frac{6}{2006.2016}\)
\(=\frac{6}{10}\left(\frac{1}{6}-\frac{1}{16}+\frac{1}{16}-\frac{1}{26}+...+\frac{1}{2006}-\frac{1}{2016}\right)\)
\(=\frac{3}{5}\left(\frac{1}{6}-\frac{1}{2016}\right)\)
\(=\frac{67}{672}\)
\(B=\frac{1}{16}+\frac{6}{16\cdot26}+\frac{6}{26\cdot36}+...+\frac{6}{2006\cdot2016}\)
\(B=\frac{1}{16}+6\left(\frac{1}{16\cdot26}+\frac{1}{26\cdot36}+...+\frac{1}{2006\cdot2016}\right)\)
\(B=\frac{1}{16}+6\left[\frac{1}{10}\left(\frac{10}{16\cdot26}+\frac{10}{26\cdot36}+...+\frac{10}{2006\cdot1016}\right)\right]\)
\(B=\frac{1}{16}+6\left[\frac{1}{10}\left(\frac{1}{16}-\frac{1}{26}+\frac{1}{26}-\frac{1}{36}+...+\frac{1}{2006}-\frac{1}{2016}\right)\right]\)
\(B=\frac{1}{16}+6\left[\frac{1}{10}\left(\frac{1}{16}-\frac{1}{2016}\right)\right]\)
\(B=\frac{1}{16}+6\cdot\left[\frac{1}{10}\cdot\frac{125}{2016}\right]\)
\(B=\frac{1}{16}+6\cdot\frac{26}{4032}\)
\(B=\frac{1}{16}+\frac{25}{672}\)
\(B=\frac{57}{672}\)
\(=\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{26}+...+\dfrac{1}{2006}-\dfrac{1}{2016}\)
=1/8-1/2016
=251/2016
\(\frac{\frac{15}{6.16}+\frac{15}{16.26}+\frac{15}{26.36}}{\frac{33}{6.16}-\frac{63}{16.26}-\frac{93}{26.36}}\)
\(=\frac{\frac{15}{10}\cdot\left(\frac{1}{6}-\frac{1}{16}+\frac{1}{16}-\frac{1}{26}+\frac{1}{26}-\frac{1}{36}\right)}{\frac{11}{32}-\frac{63}{416}-\frac{31}{312}}\)
\(=\frac{\frac{15}{10}\cdot\left(\frac{1}{6}-\frac{1}{36}\right)}{\frac{143}{416}-\frac{63}{416}-\frac{124}{\frac{3}{416}}}=\frac{\frac{5}{24}}{\frac{143-63-\frac{124}{3}}{416}}\)
\(=\frac{\frac{5}{24}}{\frac{116}{\frac{3}{416}}}=\frac{\frac{5}{24}}{\frac{29}{312}}=\frac{65}{29}\)
a)
\(\begin{array}{l}\left( {0,25 - \frac{5}{6}} \right).1,6 + \frac{{ - 1}}{3}\\ =(\frac{25}{100}-\frac{5}{6}).\frac{16}{10}+\frac{-1}{3}\\= \left( {\frac{1}{4} - \frac{5}{6}} \right).\frac{8}{5} + \frac{{ - 1}}{3}\\ = \left( {\frac{6}{{24}} - \frac{{20}}{{24}}} \right).\frac{8}{5} + \frac{{ - 1}}{3}\\ = \frac{{ - 14}}{{24}}.\frac{8}{5} + \frac{{ - 1}}{3}\\ = \frac{{ - 14}}{{15}} + \frac{{ - 1}}{3}\\ = \frac{{ - 14}}{{15}} + \frac{{ - 5}}{{15}}\\ = \frac{{ - 19}}{{15}}\end{array}\)
b)
\(\begin{array}{l}3 - 2.\left[ {0,5 + \left( {0,25 - \frac{1}{6}} \right)} \right]\\ = 3 - 2.\left[ {\frac{1}{2} + \left( {\frac{1}{4} - \frac{1}{6}} \right)} \right]\\ = 3 - 2.\left( {\frac{1}{2} + \frac{1}{{12}}} \right)\\ =3-2.(\frac{6}{12}+\frac{1}{12})\\= 3 - 2.\frac{7}{{12}}\\ = 3 - \frac{7}{6}\\=\frac{18}{6}-\frac{7}{6}\\ = \frac{{11}}{6}\end{array}\)
\(M=4\frac{1}{3}-\sqrt{16}+5\sqrt{\frac{4}{9}}-\frac{25}{\left(\sqrt{6}\right)^2}\)
\(=\frac{13}{3}-4+5\cdot\frac{2}{3}-\frac{25}{6}\)
\(=\frac{1}{3}+\frac{10}{3}-\frac{25}{6}\)
\(=\frac{11}{3}-\frac{25}{6}\)
\(=-\frac{1}{2}\)
\(\left[18\frac{1}{6}-\left(0,06:7\frac{1}{2}+3\frac{2}{5}\cdot0,38\right)\right]:\left[16-2\frac{2}{3}\cdot4\frac{3}{4}\right]\)
\(< =>\left[18\frac{1}{6}-\left(\frac{1}{125}+\frac{323}{250}\right)\right]:\left[16-\frac{38}{3}\right]\)
\(< =>\left[18\frac{1}{6}-\frac{13}{10}\right]:\frac{10}{3}\)
\(< =>\frac{253}{15}:\frac{10}{3}\)
\(< =>\frac{253}{50}\)
nhân với 1/6
nhân với 1/6 cả 2 vế rồi nhân cả 2 vế với 10