K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2021

Ta có:

\(A=\dfrac{\cos10^0-\sqrt{3}\sin10^0}{\sin10^0\cos10^0}\)

\(=\dfrac{4\left(\dfrac{1}{2}cos10^0-\dfrac{\sqrt{3}}{2}sin10^0\right)}{2sin10^0cos10^0}=\dfrac{4\left(s\text{in3}0^0cos10^0-cos30^0s\text{in}10^0\right)}{sin20^0}=\dfrac{4sin\left(30^0-10^0\right)}{s\text{in2}0^0}=4\)

27 tháng 3 2022

help me pls T-T

AH
Akai Haruma
Giáo viên
17 tháng 2 2021

Lời giải:

Đặt $a-\frac{b}{2}=x; \frac{a}{2}-b=y$ thì $45^0< x< 180^0; -45^0< y< 90^0$

$\cos x=\frac{-1}{4}; 45^0< x< 180^0$ nên $\sin x=\frac{\sqrt{15}}{4}$

$\sin y=\frac{1}{3}; -45^0< y< 90^0$ nên $\cos y=\frac{2\sqrt{2}}{3}$

\(P=72\cos (2x-2y)+49=72[2\cos ^2(x-y)-1]+49=144\cos ^2(x-y)-23\)

\(=144(\cos x\cos y+\sin x\sin y)^2-23=-4\sqrt{30}\)

Đáp án C.

3 tháng 5 2021

undefined

3 tháng 2 2023

1) Áp dụng bđt Cauchy cho 3 số dương ta có

 \(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{x}+x^3\ge4\sqrt[4]{\dfrac{1}{x}.\dfrac{1}{x}.\dfrac{1}{x}.x^3}=4\) (1)

\(\dfrac{3}{y^2}+y^2\ge2\sqrt{\dfrac{3}{y^2}.y^2}=2\sqrt{3}\) (2)

\(\dfrac{3}{z^3}+z=\dfrac{3}{z^3}+\dfrac{z}{3}+\dfrac{z}{3}+\dfrac{z}{3}\ge4\sqrt[4]{\dfrac{3}{z^3}.\dfrac{z}{3}.\dfrac{z}{3}.\dfrac{z}{3}}=4\sqrt{3}\) (3)

Cộng (1);(2);(3) theo vế ta được

\(\left(\dfrac{3}{x}+\dfrac{3}{y^2}+\dfrac{3}{z^3}\right)+\left(x^3+y^2+z\right)\ge4+2\sqrt{3}+4\sqrt{3}\)

\(\Leftrightarrow3\left(\dfrac{1}{x}+\dfrac{1}{y^2}+\dfrac{1}{z^3}\right)\ge3+4\sqrt{3}\)

\(\Leftrightarrow P\ge\dfrac{3+4\sqrt{3}}{3}\)

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{x}=x^3\\\dfrac{3}{y^2}=y^2\\\dfrac{3}{z^3}=\dfrac{z}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\sqrt[4]{3}\\z=\sqrt{3}\end{matrix}\right.\) (thỏa mãn giả thiết ban đầu)

 

3 tháng 2 2023

2) Ta có \(4\sqrt{ab}=2.\sqrt{a}.2\sqrt{b}\le a+4b\)

Dấu"=" khi a = 4b

nên \(\dfrac{8}{7a+4b+4\sqrt{ab}}\ge\dfrac{8}{7a+4b+a+4b}=\dfrac{1}{a+b}\)

Khi đó \(P\ge\dfrac{1}{a+b}-\dfrac{1}{\sqrt{a+b}}+\sqrt{a+b}\)

Đặt \(\sqrt{a+b}=t>0\) ta được

\(P\ge\dfrac{1}{t^2}-\dfrac{1}{t}+t=\left(\dfrac{1}{t^2}-\dfrac{2}{t}+1\right)+\dfrac{1}{t}+t-1\)

\(=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\)

Có \(\dfrac{1}{t}+t\ge2\sqrt{\dfrac{1}{t}.t}=2\) (BĐT Cauchy cho 2 số dương)

nên \(P=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\ge\left(\dfrac{1}{t}-1\right)^2+1\ge1\)

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{t}-1=0\\t=\dfrac{1}{t}\end{matrix}\right.\Leftrightarrow t=1\)(tm)

khi đó a + b = 1

mà a = 4b nên \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)

Vậy MinP = 1 khi \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)

 

NV
6 tháng 8 2021

\(A=cos\left(\dfrac{\pi}{7}\right)cos\left(\dfrac{4\pi}{7}\right)\left(-cos\left(\pi-\dfrac{5\pi}{7}\right)\right)=-cos\left(\dfrac{\pi}{7}\right)cos\left(\dfrac{2\pi}{7}\right)cos\left(\dfrac{4\pi}{7}\right)\)

\(\Rightarrow A.sin\left(\dfrac{\pi}{7}\right)=-sin\left(\dfrac{\pi}{7}\right).cos\left(\dfrac{\pi}{7}\right)cos\left(\dfrac{2\pi}{7}\right)cos\left(\dfrac{4\pi}{7}\right)\)

\(=-\dfrac{1}{2}sin\left(\dfrac{2\pi}{7}\right)cos\left(\dfrac{2\pi}{7}\right)cos\left(\dfrac{4\pi}{7}\right)=-\dfrac{1}{4}sin\left(\dfrac{4\pi}{7}\right)cos\left(\dfrac{4\pi}{7}\right)\)

\(=-\dfrac{1}{8}sin\left(\dfrac{8\pi}{7}\right)=\dfrac{1}{8}sin\left(\dfrac{\pi}{7}\right)\)

\(\Rightarrow A=\dfrac{1}{8}\)

\(B=\dfrac{\sqrt{3}}{2}.cos48^0.cos24^0.cos12^0\)

\(\Rightarrow B.sin12^0=\dfrac{\sqrt{3}}{2}sin12^0.cos12^0cos24^0.cos48^0\)

\(=\dfrac{\sqrt{3}}{4}sin24^0cos24^0cos48^0=\dfrac{\sqrt{3}}{8}sin48^0.cos48^0\)

\(=\dfrac{\sqrt{3}}{16}sin96^0=\dfrac{\sqrt{3}}{16}cos6^0\)

\(\Rightarrow2B.sin6^0.cos6^0=\dfrac{\sqrt{3}}{16}cos6^0\Rightarrow B=\dfrac{\sqrt{3}}{32.sin6^0}\)

Biểu thức này ko thể rút gọn tiếp được

Câu 1: Chứng minha) \(\dfrac{cosx+sin2x}{1+sinx-cos2x}=cotx\) b) \(\dfrac{1+sin3x-cos6x}{cos3x+sin6x}=tan3x\)Câu 2: Tínha) cos10.cos50.cos70b) sin10.sin50.sin70c) cos20.cos40.cos60.cos60d) sin20.sin40.sin60.sin80Câu 3: Trong mặt phẳng Oxy, cho tam giác ABC có điểm A(-4;2) và đường cao CH : x-y-1=0; trung điểm của BC là I(-2;3). Tìm tọa độ đỉnh BCâu 4: Trong mặt phẳng Oxy, cho tam giác ABC có điểm B(-1;2) và đường cao AH : x+y-2=0; trung điểm của AC là...
Đọc tiếp

Câu 1: Chứng minh

a) \(\dfrac{cosx+sin2x}{1+sinx-cos2x}=cotx\)

 

b) \(\dfrac{1+sin3x-cos6x}{cos3x+sin6x}=tan3x\)

Câu 2: Tính

a) cos10.cos50.cos70

b) sin10.sin50.sin70

c) cos20.cos40.cos60.cos60

d) sin20.sin40.sin60.sin80

Câu 3: Trong mặt phẳng Oxy, cho tam giác ABC có điểm A(-4;2) và đường cao CH : x-y-1=0; trung điểm của BC là I(-2;3). Tìm tọa độ đỉnh B

Câu 4: Trong mặt phẳng Oxy, cho tam giác ABC có điểm B(-1;2) và đường cao AH : x+y-2=0; trung điểm của AC là I(-2;1). Viết phương trình cạnh AC

Câu 5: Cho các số dương x,y thỏa mãn x+ y = \(\dfrac{1}{2}\). Tìm giá trị nhỏ nhất của

P=\(\dfrac{1}{x}+\dfrac{1}{y}\)

Câu 6: Cho số thực x thỏa mãn x>4. Tìm giá trị nhỏ nhất của \(Q=9x+\dfrac{1}{x-4}\)

Câu 7: Cho số dương x thỏa mãn 0 ≤ x ≤ 7. Tìm giá trị lớn nhất của \(Q=9x\left(7-x\right)\)

Câu 8: Trong mặt phẳng Oxy cho đường tròn (C): x2 + y2 - 2x + 2y - 7 = 0 và đường thẳng d: x + y + 1 = 0. Viết phương trình đường thẳng △ song song với đường thẳng d và cắt đường tròn (C) theo dây cung có độ dài bằng 2.

Câu 9: Trong mặt phẳng Oxy cho điểm A(-3;4) và đường thẳng d: 3x + 4y + 18 = 0. Viết phương trình đường tròn tâm A và cắt đường thẳng d theo dây cung có độ dài bằng 24

Câu 10: Trong mặt phẳng Oxy cho đường tròn (C): x2 + y2 - 2x + 2y - 7 =0 và đường thẳng d: x + y + 1=0. Viết phương trình đường thẳng △ song song với đường thẳng d và cắt đường tròn (C) theo dây cung AB sao cho tam giác ABI đều (I là tâm của (C))

 

Giúp em với ạ <3 Được câu nào hay câu đó :( tsau em thi rùi

1
20 tháng 5 2022

Câu 5. Cho x,y dương thỏa mãn \(x+y=\dfrac{1}{2}\).Tìm giá trị nhỏ nhất của 

\(P=\dfrac{1}{x}+\dfrac{1}{y}\)

Giải:

\(P=\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{x+y}{xy}=\dfrac{\dfrac{1}{2}}{xy}=\dfrac{2}{xy}\)

--> P nhỏ nhất khi \(xy\) lớn nhất

Ta có:

\(x^2+y^2\ge2xy\) ( BĐT AM-GM )

\(\Leftrightarrow\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow1\ge4xy\)

\(\Leftrightarrow xy\le\dfrac{1}{4}\)

\(\Rightarrow P\ge2:\dfrac{1}{4}=8\)

Vậy \(Min_P=8\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{4}\)

 

 

20 tháng 5 2022

ấy nhầm bài :v