Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\left(x+1\right)\left(x+2\right)-3x\left(x-4\right)=x^2+3x+2-3x^2+12x=-2x^2+15x+2\)
2) \(\left(3x-4\right)\left(x-2\right)=3x\left(x-9\right)\)
\(\Leftrightarrow3x^2-10x+8=3x^2-27x\)
\(\Leftrightarrow17x=-8\Leftrightarrow x=-\dfrac{8}{17}\)
3) \(-3\left(x-4\right)\left(x-2\right)-x^2\left(-3x+18\right)+24x-25\)
\(=-3x^3+6x^2+12x^2-24x+3x^3-18x^2+24x-25=-25\)
\(A=x^2+3x-5=x^2+3x+\frac{9}{4}-\frac{29}{4}\)
\(=\left(x+\frac{3}{2}\right)^2-\frac{29}{4}\ge-\frac{29}{4}\)
Vậy \(A_{min}=-\frac{29}{4}\Leftrightarrow x+\frac{3}{2}=0\Leftrightarrow x=-\frac{3}{2}\)
a: \(A=\dfrac{x^2-2x+2x^2+4x-3x^2-4}{\left(x-2\right)\left(x+2\right)}=\dfrac{2x-4}{\left(x-2\right)\left(x+2\right)}=\dfrac{2}{x+2}\)
a, \(\dfrac{x}{x+2}\) + \(\dfrac{2x}{x-2}\) -\(\dfrac{3x^2-4}{x^2-4}\)
= \(\dfrac{x}{x+2}+\dfrac{2x}{x-2}-\dfrac{3x^2+4}{x^2-4}\)
= \(\dfrac{x}{x+2}+\dfrac{2x}{x-2}-\dfrac{3x^2+4}{\left(x+2\right)\left(x-2\right)}\)
= \(\dfrac{x\left(x-2\right)+2x\left(x+2\right)-3x^2-4}{\left(x+2\right)\left(x-2\right)}\)
= \(\dfrac{2x-4}{\left(x+2\right)\left(x-2\right)}=\dfrac{2\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{2}{x+2}\)
Có vài bước mình làm tắc á nha :>
a: \(A=\left(\dfrac{x}{x^2-4}+\dfrac{4}{x-2}+\dfrac{1}{x+2}\right):\dfrac{3x+3}{x^2+2x}\)
\(=\dfrac{x+4x+8+x-2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x\left(x+2\right)}{3\left(x+1\right)}\)
\(=\dfrac{6\left(x+1\right)\cdot x\left(x+2\right)}{3\left(x+1\right)\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{2x}{x-2}\)
a: Ta có: \(A=\dfrac{3x^2-12x+12}{x^2-4}\)
\(=\dfrac{3\left(x^2-4x+4\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{3x-6}{x+2}\)
b: Thay \(x=-\dfrac{1}{2}\) vào A, ta được:
\(A=\left(3\cdot\dfrac{-1}{2}-6\right):\left(-\dfrac{1}{2}+2\right)\)
\(=\left(-\dfrac{3}{2}-6\right):\dfrac{3}{2}\)
\(=\dfrac{-15}{2}\cdot\dfrac{2}{3}=-5\)
\(a,P=\frac{x+2}{x-2}+\frac{x}{x+2}-\frac{4}{x^2-4}\)
\(P=\frac{\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}+\frac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{4}{\left(x-2\right)\left(x+2\right)}\)
\(P=\frac{x^2+4x+4+x^2-2x-4}{x^2-4}\)
\(P=\frac{2x^2+2x}{x^2-4}\)
\(P=\frac{2x^2+2x}{x^2-4}\) (1)
\(b,x^2-3x=0\)
\(\Leftrightarrow x\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\left(ktm\right)\\x=3\left(tm\right)\end{cases}}\)
thay vào (1) ta có :
\(P=\frac{2\cdot3^2+2\cdot3}{3^2-4}=\frac{24}{5}\)
Bạn nên viết biểu thức A bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu biểu thức của bạn hơn.
Bài 2:
a: \(A=\left(x+1\right)^3+5=20^3+5=8005\)
b: \(B=\left(x-1\right)^3+1=10^3+1=1001\)