Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, \(A=5x\left(x^2-3\right)+x^2\left(7-5x\right)-7x^2\)
\(A=5x^3-15x+7x^2-5x^3-7x^2\)
\(A=\left(5x^3-5x^3\right)+\left(7x^2-7x^2\right)-15x\)
\(A=-15x\)
Thay \(x=-5\) vào A ta được:
\(-15\cdot-5=75\)
Vậy: ....
2. \(B=x\left(x^2-3\right)+x^2\left(7-5x\right)-7x^2\)
\(B=x^3-3x+7x^2-5x^3-7x^2\)
\(B=\left(x^3-5x^3\right)+\left(7x^2-7x^2\right)-3x\)
\(B=-4x^3-3x\)
Thay \(x=10,y=-1\) vào B ta được:
\(-4\cdot10^3-3\cdot10=-4\cdot1000-3\cdot10=-4000-30=-4030\)
Vậy: ....
a)P=5x(x2-3)+x2(7-5x)-7x2
=5x3-15x+7x2-5x3-7x2
=15x
thay x=5 vào P=15x ta được
15.5=75
b)Q=x(x-y)+y(x-y)
=x2-xy+xy-y2
=x2-y2
Thay x=1,5 ; y=10 vào Q=x2-y2 ta được :
1,52-102=\(\frac{-391}{4}\)
a,P= \(5x\left(x^2-3\right)+x^2\left(7-5x\right)-7x^2\)
= \(5x^3-15x+7x^2-5x^3-7x^2\)
=\(\left(5x^3-5x^3\right)+\left(7x^2-7x^2\right)+15x\)
=\(15x\)
Thay \(x=-5\) vào biểu thức P ta có:
P=15.5
P= 75
Vậy P có giá trị bằng 75
b, Q=\(x\left(x-y\right)+y\left(x-y\right)\)
=\(x^2-xy+xy-y^2\)
=\(x^2-y^2\)
=\(\left(x+y\right)\left(x-y\right)\)
Thay \(x=1,5\) và \(y=10\) vào biểu thức Q ta có:
Q=(1,5+10)(1,5-10)
Q= 11,5 .(-8,5)
Q= -97,75
Vậy biểu thức Q có giá trị là -97,75
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
5x(x2-3) +x2(7-5x)-7x2
=5x3-15x +7x2 -5x3 -7x2
=-15x
thay x=-5, Ta có
(-15).(-5) =75
\(1)A=2x\left(x-y\right)-y\left(y-2x\right)\)
\(=2x^2-2xy-y^2+2xy\)
\(=2x^2-y^2=2.\left(-\dfrac{2}{3}\right)^2-\left(-\dfrac{1}{3}\right)^2\)
\(=\dfrac{8}{9}-\dfrac{1}{9}=\dfrac{7}{9}\)
\(2)B=5x\left(x-4y\right)-4y\left(y-5x\right)\)
\(=5x^2-20xy-4y^2+20xy\)
\(=5x^2-4y^2=5.\left(-\dfrac{1}{5}\right)^2-4.\left(-\dfrac{1}{2}\right)^2=\dfrac{1}{5}-1=-\dfrac{4}{5}\)
\(3)C=\text{x.(x^2-y^2)-x^2(x+y)+y(x^2-x)}\)
\(=x^3-xy^2-x^3-x^2y+x^2y-xy\)
\(=-xy\left(x+1\right)\)
a; A = (7\(x\) + 5)2 + (3\(x-5\))2 - (10 - 6\(x\)).(5 + 7\(x\))
A = 49\(x^2\) + 70\(x\) + 25 + 9\(x^2\) - 30\(x\) + 25 - 50 - 70\(x\) + 30\(x\) + 42\(x^2\)
A = (49\(x^2\) + 9\(x^2\) + 42\(x^2\)) + (70\(x-70x\)) - (30\(x\) - 30\(x\)) + (25+25-50)
A = 100\(x^2\) + 0 + 0 + (50 - 50)
A = 100\(x^2\) + 0 + 0 + 0
A = 100\(x^2\)
Thay \(x=-2\) vào A = 100\(x^2\) ta có:
A = 100.(-2)2
A = 100.4
A = 400.
a: \(A=5x^3-15x+7x^2-5x^3-7x^2+25=-15x+25\)
\(=75+25=100\)
b: \(B=x^2-xy+xy-y^2=x^2-y^2\)
\(=1.5^2-10^2=2.25-100=-97.75\)