K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2018

Ta có:

\(M=\left(x^3+6x^2+12x+8\right)+3\left(x^2+4x+4\right)y+3\left(x+2\right)y^2+y^3\)

\(M=\left(x+2\right)^3+3\left(x+2\right)^2y+3\left(x+2\right)y^2+y^3\)

\(M=\left(x+2+y\right)^3=\left(8+2\right)^3=10^3=1000\)

15 tháng 10 2017

Giải:

\(\left(x^3+6x^2+12x+8\right)+3\left(x^2+4x+4\right)y+3\left(x+2\right)y^2+y^3\)

\(=\left(x+2\right)^3+3\left(x+2\right)^2y+3\left(x+2\right)y^2+y^3\)

\(=\left[\left(x+2\right)+y\right]^3\)

\(=\left(x+2+y\right)^3\)

Chúc bạn học tốt!

a) Ta có: \(A=x^3+6x^2+12x+8\)

\(=x^3+3\cdot x^2\cdot2+3\cdot x\cdot2^2+2^3\)

\(=\left(x+2\right)^3\)

Thay x=8 vào biểu thức \(A=\left(x+2\right)^3\), ta được:

\(A=\left(8+2\right)^3=10^3=1000\)

Vậy: 1000 là giá trị của biểu thức \(A=x^3+6x^2+12x+8\) tại x=8

b) Ta có: \(B=x^3-3x^2+3x-1\)

\(=x^3-3\cdot x^2\cdot1+3\cdot x\cdot1^2-1^3\)

\(=\left(x-1\right)^3\)

Thay x=101 vào biểu thức \(B=\left(x-1\right)^3\), ta được:

\(B=\left(101-1\right)^3=100^3=1000000\)

Vậy: 1000000 là giá trị của biểu thức \(B=x^3-3x^2+3x-1\) tại x=101

c) Ta có: \(C=\left(\frac{x}{2}-y\right)^3-6\left(y-\frac{x}{2}\right)^2-12\left(y-\frac{x}{2}\right)-8\)

\(=\left(\frac{x}{2}-y\right)^3-6\cdot\left(\frac{x}{2}-y\right)^2+12\cdot\left(\frac{x}{2}-y\right)-8\)

\(=\left(\frac{x}{2}-y-2\right)^3\)

Thay x=4 và y=2 vào biểu thức \(C=\left(\frac{x}{2}-y-2\right)^3\), ta được:

\(C=\left(\frac{4}{2}-2-2\right)^3=\left(2-2-2\right)^3=\left(-4\right)^3=-64\)

Vậy: -64 là giá trị của biểu thức \(C=\left(\frac{x}{2}-y\right)^3-6\left(y-\frac{x}{2}\right)^2-12\left(y-\frac{x}{2}\right)-8\) tại x=4 và y=2

31 tháng 10 2021

a: \(=\dfrac{\left(x^4-y^4\right)^2}{x^2+y^2}=\left(x^2-y^2\right)^2\cdot\left(x^2+y^2\right)\)

b: \(=\dfrac{\left(4x+3\right)\left(16x^2-12x+9\right)}{16x^2-12x+9}=4x+3\)

1 tháng 11 2021

Bn cs lm đc câu c, d lun k

4 tháng 6 2017

a) \(5x-10x^2\) = \(5x\left(1-2x\right)\)

b) Mạn phép sửa đề:

\(\dfrac{1}{2}x\left(x^2-4\right)+4\left(x+2\right)\) = \(\left(x+2\right)\left[\dfrac{1}{2}x\left(x-2\right)+4\right]\)

= \(\left(x+2\right)\left(\dfrac{1}{2}x^2-x+4\right)\)

c) \(x^4-y^6=\left(x^2-y^3\right)\left(x^2+y^3\right)\)

4 tháng 6 2017

e) \(x^3-4x^2+4x-1=x^3-x^2-3x^2+3x+x-1\)

= \(x^2\left(x-1\right)-3x\left(x-1\right)+\left(x-1\right)\)

= \(\left(x-1\right)\left(x^2-3x+1\right)\)

g) \(x^4+6x^3-12x^2-8x\)

= \(x\left(x^3-2x^2+8x^2-16x+4x-8\right)\)

= \(x\left[x^2\left(x-2\right)+8x\left(x-2\right)+4\left(x-2\right)\right]\)

= \(x\left(x-2\right)\left(x^2+8x+4\right)\)

h) \(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2\) (*)

Đặt \(x^2+4x+8=a\) => (*) trở thành:

\(a^2+3ax+2x^2\) = \(a^2+ãx+2ax+x^2\)

= \(a\left(a+x\right)+2x\left(a+x\right)\)

= \(\left(a+x\right)\left(a+2x\right)\) (1)

Thay \(a=x^2+4x+8\) vào (1) ta được:

\(\left(x^2+5x+8\right)\left(x^2+6x+8\right)\)

=\(\left(x^2+5x+8\right)\left(x^2+2x+4x+8\right)\)

= \(\left(x^2+5x+8\right)\left[x\left(x+2\right)+4\left(x+2\right)\right]\)

= \(\left(x+2\right)\left(x+4\right)\left(x^2+5x+8\right)\)

P/s: Còn câu f đang suy nghĩ!

25 tháng 7 2017

Câu 1 :

\(\left(2x+y\right)\left(4x^2-2xy+y^2\right)=\left(2x\right)^3+y^3=8x^3+y^3\)Câu 2:

\(A=3\left(2x-3\right)\left(3x+2\right)-2\left(x+4\right)\left(4x-3\right)+9x\left(4-x\right)=0\)\(\Leftrightarrow3\left(6x^2-2x-6\right)-2\left(4x^2+13x-12\right)+36x-9x^2=0\)\(\Leftrightarrow18x^2-6x-18-8x^2-26x+24+36x-9x^2=0\)\(\Leftrightarrow x^2+4x+6=0\)

\(\Leftrightarrow\left(x+2\right)^2=-2\)

Ta có:

\(\left(x+2\right)^2\ge0\forall x\)

Vậy pt vô nghiệm

Vậy:ko......

Câu 3:

\(\left(5x-3\right)\left(7x+2\right)-35x\left(x-1\right)=42\)

\(\Leftrightarrow35x^2+10x-21x-6-35x^2+35x-42=0\)\(\Leftrightarrow14x=48\Leftrightarrow x=\dfrac{7}{24}\)

Câu 4:

\(\left(3x+5\right)\left(2x-1\right)+\left(5-6x\right)\left(x+2\right)=x\)

\(\Leftrightarrow6x^2-3x+10x-5+5x+10-6x^2-12x-x=0\)\(\Leftrightarrow-x=-5\Rightarrow x=5\)

câu 6,

25 tháng 7 2017

Câu 6: \(\left(10x+9\right)x-\left(5x-1\right)\left(2x+3\right)=8\)

\(\Rightarrow10x^2+9x-\left(10x^2-2x+15x-3\right)=8\)

\(\Rightarrow10x^2+9x-10x^2+2x-15x+3=8\)

\(\Rightarrow-4x+3=8\)

\(\Rightarrow-4x=5\Rightarrow x=\dfrac{-5}{4}\)

Câu 7: \(x\left(x+1\right)\left(x+6\right)-x^3=5x\)

\(\Rightarrow\left(x^2+x\right)\left(x+6\right)-x^3=5x\)

\(\Rightarrow x^3+x^2+6x^2+6x-x^3=5x\)

\(\Rightarrow7x^2=-x\)

\(\Rightarrow7x=-1\Rightarrow x=\dfrac{-1}{7}\).

b: Ta có: \(\left(4x^4-3x^3\right):\left(-x^3\right)+\left(15x^2+6x\right):3x=0\)

\(\Leftrightarrow-4x+3+5x+2=0\)

\(\Leftrightarrow x=-5\)

a: \(A=2x^2-2xy-y^2+2xy=2x^2-y^2\)

\(=2\cdot\dfrac{4}{9}-\dfrac{1}{9}=\dfrac{7}{9}\)

b: \(B=5x^2-20xy-4y^2+20xy=5x^2-4y^2\)

\(=5\cdot\dfrac{1}{25}-4\cdot\dfrac{1}{4}\)

=1/5-1=-4/5

\(C=x^3+6x^2+12x+8=\left(x+2\right)^3=\left(-9\right)^3=-729\)

d: \(D=20x^3-10x^2+5x-20x^2+10x+4\)

\(=20x^3-30x^2+15x+4\)

\(=20\cdot5^3-30\cdot5^2+15\cdot2+4=1784\)

HQ
Hà Quang Minh
Giáo viên
10 tháng 1

a)

\(\begin{array}{l}A = 0,2\left( {5{\rm{x}} - 1} \right) - \dfrac{1}{2}\left( {\dfrac{2}{3}x + 4} \right) + \dfrac{2}{3}\left( {3 - x} \right)\\A = x - 0,2 - \dfrac{1}{3}x - 2 + 2 - \dfrac{2}{3}x\\ = \left( {x - \dfrac{1}{3}x - \dfrac{2}{3}x} \right) + \left( {\dfrac{{ - 1}}{2} - 2 + 2} \right)\\ =  - \dfrac{1}{2}\end{array}\)

Vậy \(A =  - \dfrac{1}{2}\) không phụ thuộc vào biến x

b)

\(\begin{array}{l}B = \left( {x - 2y} \right)\left( {{x^2} + 2{\rm{x}}y + 4{y^2}} \right) - \left( {{x^3} - 8{y^3} + 10} \right)\\B = \left[ {x - {{\left( {2y} \right)}^3}} \right] - {x^3} + 8{y^3} - 10\\B = {x^3} - 8{y^3} - {x^3} + 8{y^3} - 10 =  - 10\end{array}\)

Vậy B = -10 không phụ thuộc vào biến x, y.

c)

\(\begin{array}{l}C = 4{\left( {x + 1} \right)^2} + {\left( {2{\rm{x}} - 1} \right)^2} - 8\left( {x - 1} \right)\left( {x + 1} \right) - 4{\rm{x}}\\{\rm{C = 4}}\left( {{x^2} + 2{\rm{x}} + 1} \right) + \left( {4{{\rm{x}}^2} - 4{\rm{x}} + 1} \right) - 8\left( {{x^2} - 1} \right) - 4{\rm{x}}\\C = 4{{\rm{x}}^2} + 8{\rm{x}} + 4 + 4{{\rm{x}}^2} - 4{\rm{x}} + 1 - 8{{\rm{x}}^2} + 8 - 4{\rm{x}}\\C = \left( {4{{\rm{x}}^2} + 4{{\rm{x}}^2} - 8{{\rm{x}}^2}} \right) + \left( {8{\rm{x}} - 4{\rm{x}} - 4{\rm{x}}} \right) + \left( {4 + 1 + 8} \right)\\C = 13\end{array}\)

Vậy C = 13 không phụ thuộc vào biến x