Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\dfrac{27a^6b^3\cdot a^2b^6}{a^8b^8}=27b\)
b: \(=3y^2-5x^2y^3-2y^2+3x^2y^3\)
\(=y^2-2x^2y^3\)
c: \(=6x-y+2x^2+3y-2x^2+x\)
\(=7x+2y\)
d: \(=x-y+2y^2-6xy+\dfrac{10x^2}{y}\)
a: \(=3y^2-5x^2y^3-2y^2+3x^2y^3=y^2-2x^2y^3\)
b: \(=6x-y+2x^2+3y^2-2x^2+x=7x-y+3y^2\)
c: \(=x-y+4y^2-6xy+\dfrac{10x^2}{y}\)
\(a.\left(9x^2y^3-15x^4y^4\right):3x^2y-\left(2-3x^2y\right)y^2\)
\(=3y^2-5x^2y^3-2y^2+3x^2y^3\)
\(=y^2-2x^2y^3\)
\(b.\left(6x^2-xy\right):x+\left(2x^3y+3xy^2\right):xy-\left(2x-1\right)x\)
\(=6x-y+2x^2+3y-2+x\)
\(=2x^2+7x+2y-2\)
\(c.\left(x^2-xy\right):x+\left(6x^2y^5-9x^3y^4+15x^4y^3\right):\dfrac{3}{2}x^2y^3\)
\(=x-y+4y^2-6xy+10x^2\)
Bài 1:
a) \(\left(2x+3\right)\cdot\left(4x^2-6x+9\right)-2\left(4x^3-1\right)\)
\(=8x^3-12x^2+18x+12x^2-18x+27-8x^3-3=27-3=24\)
--> đpcm
b) Sửa đề: \(\left(x+3\right)^3-\left(x+9\right)\left(x^2+27\right)\)
\(=x^3+9x^2+27x+27-\left(x^3+27x+9x^2+243\right)\)
\(=x^3+9x^2+27x+27-x^3-27x-9x^2-243=27-243=-216\)
--> đpcm
c) \(\left(x+y\right)\left(x^2-xy+y^2\right)+\left(x-y\right)\left(x^2+xy+y^2\right)-2x^3\)
\(=x^3+y^3+x^3-y^3-2x^3=2x^3-2x^3=0\)
--> đpcm
B1: a) \(\left(2x+3\right)\left(4x^2-6x+9\right)-2\left(4x^3-1\right)\)
\(=8x^3-27-8x^3+2\)
\(=-25\)
b) c) Làm theo câu a áp dụng HĐT.
B2:
a) \(\left(x+2\right)^2-9=0\)
\(\Rightarrow\left(x+2+3\right)\left(x+2-3\right)=0\)
\(\Rightarrow\left(x+5\right)\left(x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+5=0\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-5\\x=1\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=-5\\x=1\end{matrix}\right..\)
Mấy câu b,c,d bn chịu khó tạo HĐT nhé.
e) \(\Rightarrow4x^2-4x+1+x^2+6x+9-5x^2+245=0\)
\(\Rightarrow2x=-255\)
\(\Rightarrow x=-\dfrac{255}{2}\)
Vậy \(x=-\dfrac{255}{2}\)
a) Ta có: \(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=15\)
\(\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6\left(x^2+2x+1\right)=15\)
\(\Leftrightarrow-6x^2+12x+19+6x^2+12x+6=15\)
\(\Leftrightarrow24x+25=15\)
\(\Leftrightarrow24x=-10\)
hay \(x=-\dfrac{5}{12}\)
b) Ta có: \(2x^3-50x=0\)
\(\Leftrightarrow2x\left(x-5\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)
c) Ta có: \(5x^2-4\left(x^2-2x+1\right)-5=0\)
\(\Leftrightarrow5x^2-4x^2+8x-4-5=0\)
\(\Leftrightarrow x^2+8x-9=0\)
\(\Leftrightarrow\left(x+9\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-9\\x=1\end{matrix}\right.\)
d) Ta có: \(x^3-x=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
e) Ta có: \(27x^3-27x^2+9x-1=1\)
\(\Leftrightarrow\left(3x\right)^3-3\cdot\left(3x\right)^2\cdot1+3\cdot3x\cdot1^2-1^3=1\)
\(\Leftrightarrow\left(3x-1\right)^3=1\)
\(\Leftrightarrow3x-1=1\)
\(\Leftrightarrow3x=2\)
hay \(x=\dfrac{2}{3}\)
a: \(=\dfrac{\left(x^4-y^4\right)^2}{x^2+y^2}=\left(x^2-y^2\right)^2\cdot\left(x^2+y^2\right)\)
b: \(=\dfrac{\left(4x+3\right)\left(16x^2-12x+9\right)}{16x^2-12x+9}=4x+3\)
Bn cs lm đc câu c, d lun k