K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2018

\(\frac{3\left(\sqrt{5+3\sqrt{2}}+\sqrt{5-3\sqrt{2}}\right)}{\sqrt{5+3\sqrt{2}}-\sqrt{5-3\sqrt{2}}}-\frac{\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}}{\sqrt{3+\sqrt{2}}-\sqrt{3-\sqrt{2}}}\)

\(=\frac{3\left(\sqrt{5+3\sqrt{2}}+\sqrt{5-3\sqrt{2}}\right)\left(\sqrt{5+3\sqrt{2}}+\sqrt{5-3\sqrt{2}}\right)}{\left(\sqrt{5+3\sqrt{2}}-\sqrt{5-3\sqrt{2}}\right)\left(\sqrt{5+3\sqrt{2}}+\sqrt{5-3\sqrt{2}}\right)}-\frac{\left(\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}\right)\left(\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}\right)}{\left(\sqrt{3+\sqrt{2}}-\sqrt{3-\sqrt{2}}\right)\left(\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}\right)}\)

\(=\frac{3\left(\sqrt{5+3\sqrt{2}}+\sqrt{5-3\sqrt{2}}\right)^2}{5+3\sqrt{2}-\left(5-3\sqrt{2}\right)}-\frac{\left(\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}\right)^2}{3+\sqrt{2}-\left(3-\sqrt{2}\right)}\)

\(=\frac{3\left(\sqrt{5+3\sqrt{2}}+\sqrt{5-3\sqrt{2}}\right)^2}{6\sqrt{2}}-\frac{\left(\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}\right)^2}{2\sqrt{2}}\)

\(=\frac{\left(\sqrt{5+3\sqrt{2}}+\sqrt{5-3\sqrt{2}}\right)^2}{2\sqrt{2}}-\frac{\left(\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}\right)^2}{2\sqrt{2}}\) 

20 tháng 7 2018

\(\frac{\sqrt{45+27\sqrt{2}}+\sqrt{45-27\sqrt{2}}}{\sqrt{5+3\sqrt{2}}-\sqrt{5-3\sqrt{2}}}-\frac{\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}}{\sqrt{3+\sqrt{2}}-\sqrt{3-\sqrt{2}}}\)

\(=\frac{3\left(\sqrt{5+3\sqrt{2}}+\sqrt{5-3\sqrt{2}}\right)}{\sqrt{5+3\sqrt{2}}-\sqrt{5-3\sqrt{2}}}-\frac{\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}}{\sqrt{3+\sqrt{2}}-\sqrt{3-\sqrt{2}}}\)

\(=\frac{\left(\sqrt{5+3\sqrt{2}}+\sqrt{5-3\sqrt{2}}\right)^2}{2\sqrt{2}}-\frac{\left(\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}\right)^2}{2\sqrt{2}}\)

\(=\frac{10+2\sqrt{7}-6-2\sqrt{7}}{2\sqrt{2}}=\sqrt{2}\)  

Ta có: \(A=\frac{\sqrt{45+27\sqrt{2}}+\sqrt{45-27\sqrt{2}}}{\sqrt{5+3\sqrt{2}}-\sqrt{5-3\sqrt{2}}}-\frac{\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}}{\sqrt{3+\sqrt{2}}-\sqrt{3-\sqrt{2}}}\)

\(=\frac{3\left(\sqrt{5+3\sqrt{2}}+\sqrt{5-3\sqrt{2}}\right)^2}{\left(\sqrt{5+3\sqrt{2}}\right)^2-\left(\sqrt{5-3\sqrt{2}}\right)^2}-\frac{\left(\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}\right)^2}{\left(\sqrt{3+\sqrt{2}}\right)^2-\left(\sqrt{3-\sqrt{2}}\right)^2}\)

\(=\frac{3\left[\left(\sqrt{5+3\sqrt{2}}\right)^2+2\cdot\sqrt{5+3\sqrt{2}}\cdot\sqrt{5-3\sqrt{2}}+\left(\sqrt{5-3\sqrt{2}}\right)^2\right]}{\left|5+3\sqrt{2}\right|-\left|5-3\sqrt{2}\right|}-\frac{\left(\sqrt{3+\sqrt{2}}\right)^2+2\cdot\sqrt{3+\sqrt{2}}\cdot\sqrt{3-\sqrt{2}}+\left(\sqrt{3-\sqrt{2}}\right)^2}{\left|3+\sqrt{2}\right|-\left|3-\sqrt{2}\right|}\)

\(=\frac{3\left(\left|5+3\sqrt{2}\right|+2\sqrt{7}+\left|5-3\sqrt{2}\right|\right)}{5+3\sqrt{2}-\left(5-3\sqrt{2}\right)}-\frac{\left|3+\sqrt{2}\right|+2\cdot\sqrt{7}+\left|3-\sqrt{2}\right|}{3+\sqrt{2}-\left(3-\sqrt{2}\right)}\)

\(=\frac{3\left(5+3\sqrt{2}+2\sqrt{7}+5-3\sqrt{2}\right)}{5+3\sqrt{2}-5+3\sqrt{2}}-\frac{3+\sqrt{2}+2\sqrt{7}+3-\sqrt{2}}{3+\sqrt{2}-3+\sqrt{2}}\)

\(=\frac{3\left(10+2\sqrt{7}\right)}{6\sqrt{2}}-\frac{6+2\sqrt{7}}{2\sqrt{2}}\)

\(=\frac{3\left(10+2\sqrt{7}\right)}{6\sqrt{2}}-\frac{3\left(6+2\sqrt{7}\right)}{6\sqrt{2}}\)

\(=\frac{30+6\sqrt{7}-18-6\sqrt{7}}{6\sqrt{2}}\)

\(=\frac{12}{6\sqrt{2}}=\sqrt{2}\)

Vậy: \(A=\sqrt{2}\)

AH
Akai Haruma
Giáo viên
29 tháng 5 2019

Lời giải:
a) Đặt \(\sqrt{3+\sqrt{2}}=a; \sqrt{3-\sqrt{2}}=b\Rightarrow \left\{\begin{matrix} a^2+b^2=6\\ a^2-b^2=2\sqrt{2}\\ ab=\sqrt{(3+\sqrt{2})(3-\sqrt{2})}=\sqrt{7}\end{matrix}\right.\)

\(A=\frac{a+b}{a-b}=\frac{(a+b)^2}{(a+b)(a-b)}=\frac{(a+b)^2}{a^2-b^2}=\frac{a^2+b^2+2ab}{a^2-b^2}\)

\(=\frac{6+2\sqrt{7}}{2\sqrt{2}}=\frac{3+\sqrt{7}}{\sqrt{2}}\)

b)

Đặt \(\sqrt{5+3\sqrt{2}}=a; \sqrt{5-3\sqrt{2}}=b\)

\(\Rightarrow \left\{\begin{matrix} a^2+b^2=10\\ a^2-b^2=6\sqrt{2}\\ ab=\sqrt{(5+3\sqrt{2})(5-3\sqrt{2})}=\sqrt{25-(3\sqrt{2})^2}=\sqrt{7}\end{matrix}\right.\)

\(B=\frac{\sqrt{9(5+3\sqrt{2})}+\sqrt{9(5-3\sqrt{2})}}{\sqrt{5+3\sqrt{2}}-\sqrt{5-3\sqrt{2}}}=\frac{3(a+b)}{a-b}\)

\(=\frac{3(a+b)^2}{a^2-b^2}=\frac{3(a^2+b^2+2ab)}{a^2-b^2}=\frac{3(10+2\sqrt{7})}{6\sqrt{2}}\)

\(=\frac{5+\sqrt{7}}{\sqrt{2}}\)

25 tháng 7 2018

\(\dfrac{\sqrt{45+27\sqrt{2}}+\sqrt{45-27\sqrt{2}}}{\sqrt{5+3\sqrt{2}}-\sqrt{5-3\sqrt{2}}}-\dfrac{\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}}{\sqrt{3+\sqrt{2}}-\sqrt{3-\sqrt{2}}}\)

\(=\dfrac{\sqrt{9\left(5+3\sqrt{2}\right)}+\sqrt{9\left(5-3\sqrt{2}\right)}}{\sqrt{5+3\sqrt{2}}-\sqrt{5-3\sqrt{2}}}-\dfrac{\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}}{\sqrt{3+\sqrt{2}}-\sqrt{3-\sqrt{2}}}\)

\(=\dfrac{3\left(\sqrt{5+3\sqrt{2}}+\sqrt{5-3\sqrt{2}}\right)}{\sqrt{5+3\sqrt{2}}-\sqrt{5-3\sqrt{2}}}-\dfrac{\left(\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}\right)\left(\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}\right)}{3+\sqrt{2}-3+\sqrt{2}}\)

\(=\dfrac{3\left(\sqrt{5+3\sqrt{2}}+\sqrt{5-3\sqrt{2}}\right)\left(\sqrt{5+3\sqrt{2}}+\sqrt{5-3\sqrt{2}}\right)}{5+3\sqrt{2}-5+3\sqrt{2}}-\dfrac{3+\sqrt{2}+2\sqrt{\left(3+\sqrt{2}\right)\left(3-\sqrt{2}\right)}+3-\sqrt{2}}{2\sqrt{2}}\)

\(=\dfrac{3\left[5+3\sqrt{2}+5-3\sqrt{2}+2\sqrt{\left(5+3\sqrt{2}\right)\left(5-3\sqrt{2}\right)}\right]}{6\sqrt{2}}-\dfrac{6+2\sqrt{7}}{2\sqrt{2}}\)

\(=\dfrac{3\left(10+2\sqrt{7}\right)}{6\sqrt{2}}-\dfrac{6+2\sqrt{7}}{2\sqrt{2}}=\dfrac{30+6\sqrt{7}-18-6\sqrt{7}}{6\sqrt{2}}=\dfrac{12}{6\sqrt{2}}\)

\(=\sqrt{2}\)

25 tháng 7 2018

\(\dfrac{\sqrt{45+27\sqrt{2}}+\sqrt{45-27\sqrt{2}}}{\sqrt{5+3\sqrt{2}}-\sqrt{5-3\sqrt{2}}}-\dfrac{\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}}{\sqrt{3+\sqrt{2}}-\sqrt{3-\sqrt{2}}}\\ =\dfrac{3\sqrt{5+3\sqrt{2}}+3\sqrt{5-3\sqrt{2}}}{\sqrt{5+3\sqrt{2}}-\sqrt{5-3\sqrt{2}}}-\dfrac{\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}}{\sqrt{3+\sqrt{2}}-\sqrt{3-\sqrt{2}}}\\ =\dfrac{3\left(\sqrt{5+3\sqrt{2}}+\sqrt{5-3\sqrt{2}}\right)^2}{\left(\sqrt{5+3\sqrt{2}}+\sqrt{5-3\sqrt{2}}\right)\left(\sqrt{5+3\sqrt{2}}-\sqrt{5-3\sqrt{2}}\right)}-\dfrac{\sqrt{6+4\sqrt{2}}+\sqrt{6-4\sqrt{2}}}{\sqrt{6+3\sqrt{2}}-\sqrt{6-4\sqrt{2}}}\\ =\dfrac{3\left(5+3\sqrt{2}+2\sqrt{25-18}+5-3\sqrt{2}\right)}{5+3\sqrt{2}-5+3\sqrt{2}}-\dfrac{\sqrt{4+2+4\sqrt{2}}+\sqrt{4+2-4\sqrt{2}}}{\sqrt{4+2+4\sqrt{2}}-\sqrt{4+2-4\sqrt{2}}}\\ =\dfrac{3\left(10+2\sqrt{7}\right)}{6\sqrt{2}}-\dfrac{\sqrt{\left(2+\sqrt{2}\right)^2}+\sqrt{\left(2-\sqrt{2}\right)^2}}{\sqrt{\left(2+\sqrt{2}\right)^2}-\sqrt{\left(2-\sqrt{2}\right)^2}}\\ =\dfrac{10+2\sqrt{7}}{2\sqrt{2}}-\dfrac{2+\sqrt{2}+2-\sqrt{2}}{2+\sqrt{2}-2+\sqrt{2}}\\ =\dfrac{10+2\sqrt{7}}{2\sqrt{2}}-\dfrac{4}{2\sqrt{2}}=\dfrac{6+2\sqrt{7}}{2\sqrt{2}}\)

29 tháng 7 2020

\(A=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{4}+\sqrt{6}+\sqrt{8}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=1+\sqrt{2}\)