K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11) \(\frac{3}{\sqrt{6}-\sqrt{3}}+\frac{4}{\sqrt{7}+\sqrt{3}}\) 12) \(\frac{6}{3\sqrt{2}+2\sqrt{3}}\) 13) \(\left(\sqrt{75}-3\sqrt{2}-\sqrt{12}\right)\left(\sqrt{3}+\sqrt{2}\right)\) 14)\(\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\) 15)\(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}+1}{\sqrt{5}-1}\) 16)\(\frac{\sqrt{2}}{2\sqrt{3}+4\sqrt{2}}\) 17)...
Đọc tiếp

11) \(\frac{3}{\sqrt{6}-\sqrt{3}}+\frac{4}{\sqrt{7}+\sqrt{3}}\)

12) \(\frac{6}{3\sqrt{2}+2\sqrt{3}}\)

13) \(\left(\sqrt{75}-3\sqrt{2}-\sqrt{12}\right)\left(\sqrt{3}+\sqrt{2}\right)\)

14)\(\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\)

15)\(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}+1}{\sqrt{5}-1}\)

16)\(\frac{\sqrt{2}}{2\sqrt{3}+4\sqrt{2}}\)

17) \(\frac{1}{4-3\sqrt{2}}-\frac{1}{4+3\sqrt{2}}\)

18)\(\frac{6}{\sqrt{2}-\sqrt{3}+3}\)

19)\(\frac{\sqrt{3+2\sqrt{2}}+\sqrt{3-2\sqrt{2}}}{\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}}\)

20)\(\sqrt{24}+6\sqrt{\frac{2}{3}}+\frac{10}{\sqrt{6}-1}\)

21)\(2\sqrt{40\sqrt{12}}-2\sqrt{\sqrt{75}}-3\sqrt{5\sqrt{58}}\)

22)\(4\sqrt{20}-3\sqrt{125}+5\sqrt{45}-15\sqrt{\frac{1}{5}}\)

23)\(\left(3\sqrt{8}-2\sqrt{12}+\sqrt{20}\right):\left(3\sqrt{18}-2\sqrt{27}+\sqrt{45}\right)\)

24)\(\left(\frac{15}{\sqrt{6}+1}+\frac{4}{\sqrt{6}-2}-\frac{12}{3-\sqrt{6}}\right)\left(\sqrt{6}+11\right)\)

25)\(\left(\sqrt{7}-\sqrt{5}\right)^2+2\sqrt{35}\)

26)\(\frac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}+\frac{3\sqrt{45}+\sqrt{243}}{\sqrt{5}+\sqrt{3}}\)

27)\(\frac{1}{\sqrt{7-\sqrt{24}}+1}-\frac{1}{\sqrt{7+\sqrt{24}}-1}\)

28)\(\frac{1}{2+\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{2}{3+\sqrt{3}}\)

29)\(\frac{3+\sqrt{5}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}+\frac{3-\sqrt{5}}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)

30)\(\left(15\sqrt{50}+5\sqrt{200}-3\sqrt{450}\right):\sqrt{10}\)

31)\(\left(\frac{2}{\sqrt{3}-1}+\frac{3}{\sqrt{3}-2}+\frac{15}{3-\sqrt{3}}\right).\frac{1}{\sqrt{3}+5}\)

32)\(\frac{5+\sqrt{5}}{5-\sqrt{5}}+\frac{5-\sqrt{5}}{5+\sqrt{5}}-\sqrt{10}\)

3
29 tháng 9 2019

undefined

29 tháng 9 2019

undefined

13 tháng 8 2018

\(B=\frac{9\sqrt{5}+3\sqrt{27}}{\sqrt{5}+\sqrt{3}}=\frac{9\sqrt{5}+9\sqrt{3}}{\sqrt{5}+\sqrt{3}}=\frac{9\left(\sqrt{5}+\sqrt{3}\right)}{\sqrt{5}+\sqrt{3}}=9\)

\(C=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{4}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}.\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(\sqrt{2}+1\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\sqrt{2}+1\)

mik chỉnh lại đề

\(D=\frac{3\sqrt{8}-2\sqrt{12}+\sqrt{20}}{3\sqrt{18}-2\sqrt{27}+\sqrt{45}}=\frac{6\sqrt{2}-4\sqrt{3}+2\sqrt{5}}{9\sqrt{2}-6\sqrt{3}+3\sqrt{5}}\)

\(=\frac{2\left(3\sqrt{2}-2\sqrt{3}+\sqrt{5}\right)}{3\left(3\sqrt{2}-2\sqrt{3}+\sqrt{5}\right)}=\frac{2}{3}\)

11 tháng 5

$\dfrac{\sqrt{3}}{8}a^3$.

12 tháng 8 2019

những ai thích xem minecraft và blockman go thì hãy xem kênh youtube của mik kênh mik là M.ichibi các bn nhớ sud và chia sẻ cho nhiều người khác nhé

20 tháng 7 2018

\(\frac{3\left(\sqrt{5+3\sqrt{2}}+\sqrt{5-3\sqrt{2}}\right)}{\sqrt{5+3\sqrt{2}}-\sqrt{5-3\sqrt{2}}}-\frac{\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}}{\sqrt{3+\sqrt{2}}-\sqrt{3-\sqrt{2}}}\)

\(=\frac{3\left(\sqrt{5+3\sqrt{2}}+\sqrt{5-3\sqrt{2}}\right)\left(\sqrt{5+3\sqrt{2}}+\sqrt{5-3\sqrt{2}}\right)}{\left(\sqrt{5+3\sqrt{2}}-\sqrt{5-3\sqrt{2}}\right)\left(\sqrt{5+3\sqrt{2}}+\sqrt{5-3\sqrt{2}}\right)}-\frac{\left(\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}\right)\left(\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}\right)}{\left(\sqrt{3+\sqrt{2}}-\sqrt{3-\sqrt{2}}\right)\left(\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}\right)}\)

\(=\frac{3\left(\sqrt{5+3\sqrt{2}}+\sqrt{5-3\sqrt{2}}\right)^2}{5+3\sqrt{2}-\left(5-3\sqrt{2}\right)}-\frac{\left(\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}\right)^2}{3+\sqrt{2}-\left(3-\sqrt{2}\right)}\)

\(=\frac{3\left(\sqrt{5+3\sqrt{2}}+\sqrt{5-3\sqrt{2}}\right)^2}{6\sqrt{2}}-\frac{\left(\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}\right)^2}{2\sqrt{2}}\)

\(=\frac{\left(\sqrt{5+3\sqrt{2}}+\sqrt{5-3\sqrt{2}}\right)^2}{2\sqrt{2}}-\frac{\left(\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}\right)^2}{2\sqrt{2}}\) 

20 tháng 7 2018

\(\frac{\sqrt{45+27\sqrt{2}}+\sqrt{45-27\sqrt{2}}}{\sqrt{5+3\sqrt{2}}-\sqrt{5-3\sqrt{2}}}-\frac{\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}}{\sqrt{3+\sqrt{2}}-\sqrt{3-\sqrt{2}}}\)

\(=\frac{3\left(\sqrt{5+3\sqrt{2}}+\sqrt{5-3\sqrt{2}}\right)}{\sqrt{5+3\sqrt{2}}-\sqrt{5-3\sqrt{2}}}-\frac{\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}}{\sqrt{3+\sqrt{2}}-\sqrt{3-\sqrt{2}}}\)

\(=\frac{\left(\sqrt{5+3\sqrt{2}}+\sqrt{5-3\sqrt{2}}\right)^2}{2\sqrt{2}}-\frac{\left(\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}\right)^2}{2\sqrt{2}}\)

\(=\frac{10+2\sqrt{7}-6-2\sqrt{7}}{2\sqrt{2}}=\sqrt{2}\)  

Ta có: \(A=\frac{\sqrt{45+27\sqrt{2}}+\sqrt{45-27\sqrt{2}}}{\sqrt{5+3\sqrt{2}}-\sqrt{5-3\sqrt{2}}}-\frac{\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}}{\sqrt{3+\sqrt{2}}-\sqrt{3-\sqrt{2}}}\)

\(=\frac{3\left(\sqrt{5+3\sqrt{2}}+\sqrt{5-3\sqrt{2}}\right)^2}{\left(\sqrt{5+3\sqrt{2}}\right)^2-\left(\sqrt{5-3\sqrt{2}}\right)^2}-\frac{\left(\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}\right)^2}{\left(\sqrt{3+\sqrt{2}}\right)^2-\left(\sqrt{3-\sqrt{2}}\right)^2}\)

\(=\frac{3\left[\left(\sqrt{5+3\sqrt{2}}\right)^2+2\cdot\sqrt{5+3\sqrt{2}}\cdot\sqrt{5-3\sqrt{2}}+\left(\sqrt{5-3\sqrt{2}}\right)^2\right]}{\left|5+3\sqrt{2}\right|-\left|5-3\sqrt{2}\right|}-\frac{\left(\sqrt{3+\sqrt{2}}\right)^2+2\cdot\sqrt{3+\sqrt{2}}\cdot\sqrt{3-\sqrt{2}}+\left(\sqrt{3-\sqrt{2}}\right)^2}{\left|3+\sqrt{2}\right|-\left|3-\sqrt{2}\right|}\)

\(=\frac{3\left(\left|5+3\sqrt{2}\right|+2\sqrt{7}+\left|5-3\sqrt{2}\right|\right)}{5+3\sqrt{2}-\left(5-3\sqrt{2}\right)}-\frac{\left|3+\sqrt{2}\right|+2\cdot\sqrt{7}+\left|3-\sqrt{2}\right|}{3+\sqrt{2}-\left(3-\sqrt{2}\right)}\)

\(=\frac{3\left(5+3\sqrt{2}+2\sqrt{7}+5-3\sqrt{2}\right)}{5+3\sqrt{2}-5+3\sqrt{2}}-\frac{3+\sqrt{2}+2\sqrt{7}+3-\sqrt{2}}{3+\sqrt{2}-3+\sqrt{2}}\)

\(=\frac{3\left(10+2\sqrt{7}\right)}{6\sqrt{2}}-\frac{6+2\sqrt{7}}{2\sqrt{2}}\)

\(=\frac{3\left(10+2\sqrt{7}\right)}{6\sqrt{2}}-\frac{3\left(6+2\sqrt{7}\right)}{6\sqrt{2}}\)

\(=\frac{30+6\sqrt{7}-18-6\sqrt{7}}{6\sqrt{2}}\)

\(=\frac{12}{6\sqrt{2}}=\sqrt{2}\)

Vậy: \(A=\sqrt{2}\)