K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2021

cghsbbvb hs bsc x bvbddddddd c n  snsnfERGQHZ NAC nnnnNNNNNNNNNNNNNNNNNNNNNNNN nsn  v 

30 tháng 9 2021

tgrtyfdytiloniyu7d tadftr DxZhfhygd ỳdstAACA 

11 tháng 5 2016

\(A=\frac{1}{299}.\left(1-\frac{1}{300}+\frac{1}{2}-\frac{1}{301}+...........+\frac{1}{101}-\frac{1}{400}\right)\)

\(=\frac{1}{299}.\left(1+\frac{1}{2}+........+\frac{1}{101}-\frac{1}{300}-\frac{1}{301}-....-\frac{1}{400}\right)\)

\(B=\frac{1}{101}.\left(1-\frac{1}{102}+\frac{1}{2}-\frac{1}{103}+........+\frac{1}{299}-\frac{1}{400}\right)\)

\(=\frac{1}{101}.\left(1+\frac{1}{2}+.......+\frac{1}{299}-\frac{1}{102}-\frac{1}{103}-............-\frac{1}{400}\right)\)

\(=\frac{1}{101}\left(1+\frac{1}{2}+......+\frac{1}{102}+\frac{1}{103}+.....+\frac{1}{299}-\frac{1}{102}-.....-\frac{1}{300}-....-\frac{1}{400}\right)\)

\(=\frac{1}{101}\left(1+\frac{1}{2}+........+\frac{1}{101}-\frac{1}{300}-\frac{1}{301}-...-\frac{1}{400}\right)\)

\(\Rightarrow\frac{A}{B}=\frac{\frac{1}{299}}{\frac{1}{101}}=\frac{101}{299}\)

11 tháng 5 2016

299A=(1+1/2+1/3+...+1/101)-(1/300+1/301+...+1/400)=C

101B=(1+1/2+1/3+...+1/299)-(1/102+1/103+..+1/400)=D=C

=>A/B=C/299.101/C=101/299

1 tháng 4 2017

S= 1/199 + 2/198 + ... + 198/2 + 199/1

S= (1/199 + 1) + (2/198 + 1)+ ... + (198/2  + 1) +1

S= 200/200 + 200/199 + 200/198 + ... + 200/2 

S= 200.(1/200 + 1/199 + ... + 1/2)

Suy ra , B=(1/2 + 1/3 + ... +1/200) : 200.(1/2 + 1/3 + ... + 1/200)

B=1 : 200 = 1/200

26 tháng 5 2019

\(A=\frac{\frac{1}{1\cdot300}+\frac{1}{2\cdot301}+\frac{1}{3\cdot302}+...+\frac{1}{101\cdot400}}{\frac{1}{1\cdot102}+\frac{1}{2\cdot103}+\frac{1}{3\cdot104}+...+\frac{1}{299\cdot400}}\)

\(A=\frac{\frac{1}{299}\left(\frac{299}{1\cdot300}+\frac{299}{2\cdot301}+\frac{299}{3\cdot302}+...+\frac{299}{101\cdot400}\right)}{\frac{1}{101}\left(\frac{101}{1\cdot102}+\frac{101}{2\cdot103}+\frac{101}{3\cdot104}+...+\frac{299}{299\cdot400}\right)}\)

\(A=\frac{\frac{1}{299}\left(1-\frac{1}{300}+\frac{1}{2}-\frac{1}{301}+\frac{1}{3}-\frac{1}{302}+...+\frac{1}{101}-\frac{1}{400}\right)}{\frac{1}{101}\left(1-\frac{1}{102}+\frac{1}{2}-\frac{1}{103}+\frac{1}{3}-\frac{1}{104}+...+\frac{1}{299}-\frac{1}{400}\right)}\)    

đặt \(A=\frac{1}{1.300}+\frac{1}{2.301}+...+\frac{1}{101.400}\)

\(\Rightarrow299A=\frac{299}{1.300}+\frac{299}{2.301}+...+\frac{299}{101.400}=1-\frac{1}{300}+\frac{1}{2}-\frac{1}{301}+...+\frac{1}{101}-\frac{1}{400}\)

\(=\left(1+\frac{1}{2}+...+\frac{1}{101}\right)-\left(\frac{1}{300}+\frac{1}{301}+...+\frac{1}{400}\right)=C\)

\(\Rightarrow A=\frac{C}{299}\)

đặt \(B=\frac{1}{1.102}+\frac{1}{2.103}+\frac{1}{3.104}+...+\frac{1}{299.400}\)

\(\Rightarrow101B=\frac{101}{1.102}+\frac{101}{2.103}+...+\frac{1}{299.400}=1-\frac{1}{102}+\frac{1}{2}-\frac{1}{103}+...+\frac{1}{299}-\frac{1}{400}\)

\(=\left(1+\frac{1}{2}+...+\frac{1}{299}\right)-\left(\frac{1}{102}+\frac{1}{103}+...+\frac{1}{400}\right)=\left(1+\frac{1}{2}+...+\frac{1}{101}\right)-\left(\frac{1}{300}+...+\frac{1}{400}\right)=C\)

\(\Rightarrow B=\frac{C}{101}\)

bài toán được viết lại như sau:

\(\frac{C}{\frac{299}{\frac{C}{101}}}\)=\(\frac{101}{299}\)

4 tháng 7 2016

Sai rồi