K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2019

\(=\frac{\left(2+\sqrt{2}\right)^2}{\sqrt{2}+\sqrt{\left(2+\sqrt{2}\right)^2}}+\frac{\left(2-\sqrt{2}\right)^2}{\sqrt{2}-\sqrt{\left(2-\sqrt{2}\right)^2}}\)

\(=\frac{\left(2+\sqrt{2}\right)^2}{2\sqrt{2}+2}+\frac{\left(2-\sqrt{2}\right)^2}{2\sqrt{2}-2}=\frac{2\left(\sqrt{2}+1\right)^2}{2\left(\sqrt{2}+1\right)}+\frac{2\left(\sqrt{2}-1\right)^2}{2\left(\sqrt{2}-1\right)}=\sqrt{2}+1+\sqrt{2}-1=2\sqrt{2}\)

12 tháng 8 2019

Câu 1,2,3 Ez quá rồi :3

Câu 4:

Tổng quát:

\(\frac{1}{\sqrt{a}+\sqrt{a+1}}=\frac{\sqrt{a}-\sqrt{a+1}}{a-a-1}=\sqrt{a+1}-\sqrt{a}.\) Game là dễ :v

12 tháng 8 2019

Câu 5 ko khác câu 4 lắm :v

Câu 5: 

Tổng quát:

\(\frac{1}{\sqrt{a}-\sqrt{a+1}}=\frac{\sqrt{a}+\sqrt{a+1}}{a-a-1}=-\sqrt{a}-\sqrt{a+1}.\) Game là dễ :v

22 tháng 10 2021

\(C=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)

\(C=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+2\sqrt{12}}}}}\)

\(C=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\left(2+\sqrt{3}\right)}}}\)

\(C=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}}\)

\(C=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{28-2\sqrt{75}}}}\)

\(C=\sqrt{4+\sqrt{5\sqrt{3}+5\left(5-\sqrt{3}\right)}}\)

\(C=\sqrt{4+5}\)

\(C=3\)

a) \(=\frac{7-4\sqrt{3}+7+4\sqrt{3}}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}=\frac{14}{49-48}=14\)

b) \(=\frac{15\left(\sqrt{6}-1\right)}{\left(\sqrt{6}+1\right)\left(\sqrt{6}-1\right)}-\frac{5\sqrt{6}}{5}+\frac{4\sqrt{3}-12\sqrt{2}}{\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)}\)

13 tháng 8 2015

1)

\(M=\frac{6+4\sqrt{2}}{\sqrt{2}+\sqrt{6+4\sqrt{2}}}+\frac{6-4\sqrt{2}}{\sqrt{2}-\sqrt{6-4\sqrt{2}}}\)

\(=\frac{6+4\sqrt{2}}{\sqrt{2}+\sqrt{4+2.2.\sqrt{2}+2}}+\frac{6-4\sqrt{2}}{\sqrt{2}-\sqrt{4-2.2.\sqrt{2}+2}}\)

\(=\frac{6+4\sqrt{2}}{\sqrt{2}+\sqrt{\left(2+\sqrt{2}\right)^2}}+\frac{6-4\sqrt{2}}{\sqrt{2}-\sqrt{\left(2-\sqrt{2}\right)^2}}\)

\(=\frac{6+4\sqrt{2}}{2+2\sqrt{2}}+\frac{6-4\sqrt{2}}{-2+2\sqrt{2}}\)

\(=\frac{2.\left(3+2\sqrt{2}\right)}{2.\left(1+\sqrt{2}\right)}+\frac{2.\left(3-2\sqrt{2}\right)}{2.\left(\sqrt{2}-1\right)}\)

\(=\frac{3+2\sqrt{2}}{\sqrt{2}+1}+\frac{3-2\sqrt{2}}{\sqrt{2}-1}\)

\(=\frac{\left(3+2\sqrt{2}\right)\left(\sqrt{2}-1\right)}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}+\frac{\left(3-2\sqrt{2}\right)\left(\sqrt{2}+1\right)}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}\)

\(=1+\sqrt{2}+\sqrt{2}-1=2\sqrt{2}\)