Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Viết vậy đúng đó em
A = 5/(3.7) + 5/(7.11) + 5/(11.15) + ... + 5/(2019.2023)
= 5/4 . [4/(3.7) + 4/(7.11) + 4/(11.15) + ... + 4/(2019.2023)]
= 5/4 . (1/3 - 1/7 + 1/7 - 1/11 + 1/11 - 1/15 + ... + 1/2019 - 1/2023)
= 5/4 . (1/3 - 1/2023)
= 5/4 . 2020/6069
= 2525/6069
\(\frac{5\left(3.7^{15}-19.7^{14}\right)}{7^{16}+3.7^{15}}=\frac{5.2.7^{14}}{10.7^{15}}=\frac{1}{7}\)
\(E=\frac{\frac{4}{3\cdot7}-\frac{4}{11.15}}{1-\frac{3}{7}-\frac{3}{11}+\frac{1}{5}}-\left(\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2006.2007}\right)\)
\(=\frac{\frac{1}{3}-\frac{1}{7}-\frac{1}{11}+\frac{1}{15}}{\frac{192}{385}}-\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{2006}-\frac{1}{2007}\right)\)
\(=\frac{\frac{64}{385}}{\frac{192}{385}}-\left(\frac{1}{3}-\frac{1}{2007}\right)\)
\(=\frac{1}{3}-\left(\frac{1}{3}-\frac{1}{2007}\right)=\frac{1}{2007}\)
Vậy : \(E=\frac{1}{2007}\)
Tính :
\(\frac{2.5^{22}-9.2^{21}}{5^{20}}:\frac{5.\left(3.7^{15}-19.7^{14}\right)}{7^{16}+3.7^{15}}\)
1253.75-1755: 5):20012002
= [(53)3.75-1755:5):20012002
= (59.75-1755:5):20012002
= (55.54.74.7-1754.175:5):20012002
= (55.354.7-1754.35):20012002
= (5.7.354.54-1754.35):20012002
= (35.1754-1754.35):20012002
= 0:20012002
= 0
a) \(\frac{5^5.20^3-5^4.20^3+5^7.4^5}{\left(20+5\right)^3.4^5}\)
= \(\frac{5^5.\left(2^2.5\right)^3-5^4.\left(2^2.5\right)^3+5^7.\left(2^2\right)^5}{\left(5^2\right)^3.\left(2^2\right)^5}\)
= \(\frac{5^5.2^6.5^3-5^4.2^6.5^3+5^7.2^{10}}{5^6.2^{10}}\)
= \(\frac{5^8.2^6-5^7.2^6+5^7.2^{10}}{5^6.2^{10}}\)
= \(\frac{5^7.2^6.\left(5-1+2^4\right)}{5^6.2^{10}}\)
= \(\frac{5.20}{2^4}=\frac{25}{4}\)
\(\frac{4^6\cdot9^5+6^9\cdot120}{8^4\cdot3^{12}-6^{11}}\)
\(=\frac{2^{12}\cdot3^{10}+2^3\cdot3\cdot5\cdot2^9\cdot3^9}{2^{12}\cdot3^{12}-2^{11}\cdot3^{11}}\)
\(=\frac{2^{12}\cdot3^{10}+2^{12}\cdot3^{10}\cdot5}{2^{12}\cdot3^{12}-2^{11}\cdot3^{11}}\)
\(=\frac{2^{12}\cdot3^{10}\left(1+5\right)}{2^{11}\cdot3^{11}\left(6-1\right)}\)
\(=\frac{2^{13}\cdot3^{11}}{2^{11}\cdot3^{11}\cdot5}=\frac{2^2}{5}=\frac{4}{5}\)