Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H M F E K P Q S T
Gọi BF,CE cắt nhau tại K và cắt AC,AB lần lượt tại S,T. Đường thẳng AH cắt MF,ME lần lượt tại P,Q.
Ta dễ thấy P là trực tâm của \(\Delta\)MAC, suy ra CP // EA (Cùng vuông góc AM). Tương tự BQ // FA
Áp dụng ĐL Melelaus và ĐL Thales ta có:
\(\frac{\overline{KB}}{\overline{KF}}.\frac{\overline{TA}}{\overline{TB}}.\frac{\overline{EF}}{\overline{EA}}=1\Rightarrow\frac{\overline{TA}}{\overline{TB}}=\frac{\overline{KF}}{\overline{KB}}.\frac{\overline{EA}}{\overline{EF}}=\frac{\overline{AF}}{\overline{QB}}.\frac{\overline{EA}}{\overline{EF}}\)
\(\frac{\overline{KC}}{\overline{KE}}.\frac{\overline{SA}}{\overline{SC}}.\frac{\overline{FE}}{\overline{FA}}=1\Rightarrow\frac{\overline{SC}}{\overline{SA}}=\frac{\overline{KC}}{\overline{KE}}.\frac{\overline{FE}}{\overline{FA}}=\frac{\overline{CP}}{\overline{EA}}.\frac{\overline{FE}}{\overline{FA}}\)
Suy ra \(\frac{\overline{TA}}{\overline{TB}}.\frac{\overline{HB}}{\overline{HC}}.\frac{\overline{SC}}{\overline{SA}}=\frac{\overline{CP}}{\overline{QB}}.\frac{\overline{HB}}{\overline{HC}}=-\frac{\overline{HC}}{\overline{HB}}.\frac{\overline{HB}}{\overline{HC}}=-1\)
Áp dụng điều kiện đủ của ĐL Ceva ta thu được AH,BS,CT đồng quy hay AH,BF,CE đồng quy (đpcm).
a, Áp dụng PTG: \(BC=\sqrt{AB^2+AC^2}=5\left(cm\right)\)
b, Vì AI là trung tuyến ứng ch BC nên \(AI=\dfrac{1}{2}BC=2,5\left(cm\right)\)
Áp dụng HTL: \(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{12}{5}=2,4\left(cm\right)\)
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC=\sqrt{13^2-5^2}=12\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot13=5\cdot12=60\)
=>\(AH=\dfrac{60}{13}\left(cm\right)\)
Xét ΔAHB vuông tại H có
\(cosBAH=\dfrac{AH}{AB}=\dfrac{60}{13}:5=\dfrac{12}{13}\)
nên \(\widehat{BAH}\simeq23^0\)