K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi giao điểm của MN với OA là H

Vì MN\(\perp\)OA tại trung điểm của OA

nên MN\(\perp\)OA tại H và H là trung điểm của OA

Xét ΔOMA có 

MH là đường cao

MH là đường trung tuyến

Do đó: ΔOMA cân tại M

=>MO=MA

mà OM=OA

nên OM=MA=OA

=>ΔOMA đều

=>\(\widehat{MOA}=60^0\)

Xét ΔMHO vuông tại H có \(sinMOH=\dfrac{MH}{MO}\)

=>\(\dfrac{MH}{10}=sin60=\dfrac{\sqrt{3}}{2}\)

=>\(MH=10\cdot\dfrac{\sqrt{3}}{2}=5\sqrt{3}\left(cm\right)\)

ΔOMN cân tại O

mà OH là đường cao

nên H là trung điểm của MN

=>\(MN=2\cdot MH=2\cdot5\sqrt{3}=10\sqrt{3}\left(cm\right)\)

1 tháng 11 2017

5 cm nha .

1) Xét (O) có 

ΔKAB nội tiếp đường tròn(K,A,B\(\in\)(O))

AB là đường kính

Do đó: ΔKAB vuông tại K(Định lí)

\(\Leftrightarrow\widehat{AKB}=90^0\)

hay \(\widehat{HKB}=90^0\)

Xét tứ giác BKHC có 

\(\widehat{HKB}\) và \(\widehat{HCB}\) là hai góc đối

\(\widehat{HKB}+\widehat{HCB}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: BKHC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

hay B,K,H,C cùng thuộc một đường tròn(đpcm)

27 tháng 12 2019

a) Ta có AB và AC là tiếp tuyến tại A và B của (O)

=> AB⊥OB và AC⊥OC

Xét ΔAOB và ΔAOC có 

       OB=OC(=R)

Góc ABO=Góc ACO=90

       OA chung

=> ΔAOB=ΔAOC

=> AB=AC

=> A∈trung trực của BC

Có OB=OC(=R)

=>O∈trung trực của BC

=> OA là đường trung trực của BC 

Mà H là trung điểm của BC

=>A;H;O thẳng hàng

Xét ΔABO vuông tại B

=>A;B:O cùng thuộc đường tròn đường kính OA

Xét ΔACO vuông tại C

=>A;C;O cùng thuộc đuường tròn đường kính OA

=>A;B;C;O cùng thuộc đường tròn đường kính OA

b) Xét (O) có BD là đường kính

=>ΔBCD vuông tại C

=> CD⊥BC

Mà OA⊥BC

=>OA//CD

=> Góc AOC=Góc OCD

Xét ΔOCD có OC=OD

=> ΔOCD cân tại O

=> Góc OCD=Góc ODC

=> Góc ODC=Góc AOC

Xét ΔAOC và ΔCDK có 

Góc AOC=Góc CDK

Góc ACO=Góc CKD=90

=>ΔAOC∞ΔCDK

=>AOCDAOCD= ACCKACCK 

=>AC.CD=CK.OA

d) Xét ΔOCK vuông tại K

=> ΔOCK nội tiếp đường tròn đường kính OC

Xét ΔOHC vuông tại H

=> ΔOHC nội tiếp đường tròn đươngf kính OC

=> Tứ giác OKCH nội tiếp đường tròn đường kính OC

=> Góc CHK=Góc COD

Có góc BOA=Góc BCK( cùng phụ góc CBD)

Góc CHI+góc BCK=Góc BOA+ góc BAO

=>Góc CHI=Góc BAO

Mà Góc BAO=Góc CBD( cùng phụ góc ABC)

=> Góc CHI=Góc CBD

=> HI//BD

Xét ΔBCD có HI//BD và H là trung điểm của BC

=> HI là đường trung bình của ΔBCD

=> I là trung điểm của CK

29 tháng 4 2020

hay ghê

8 tháng 12 2021

3 căn 3/5 nhé

nếu cần trình bày thì bn kẻ hình ra

rồi có ob=oa=oc

ad đl pytago cho tam giác vuoong nnhes

 

9 tháng 12 2021

vẽ hình xong lấy thước đo

15 tháng 7 2020

R B O C M A E

a) Bán kính OA vuông góc với BC nên MB = MC.

Lại có MO = MA ( gt ) 

Suy ra tứ giác OBAC là hình bình hành vì có các đường chéo cắt nhau tại trung điểm mỗi đường.

Lại có: OA \(\perp\) BC nên OBAC là hình thoi.

b) Ta có: OA = OB (bán kính)

    OB = BA (tính chất hình thoi).

Nên OA = OB = BA =>  \(\Delta AOB\)đều => ∠AOB = 60o

Trong tam giác OBE vuông tại B ta có:

BE = OB . tg∠AOB = OB . tg60o = \(R.\sqrt{3}\)

16 tháng 5 2021

trình sửa thông tin trường kiểu gì vậy chị

16 tháng 5 2021

mk k bt nx

14 tháng 2 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Gọi I là trung điểm của AB

Suy ra: IO = IA = (1/2).OA = 3/2

Ta có: BC ⊥ OA (gt)

Suy ra: góc (OIB) = 90 °

Áp dụng định lí Pitago vào tam giác vuông OBI ta có: O B 2 = B I 2 + I O 2

Suy ra:  B I 2 = O B 2 - I O 2

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có: BI = CI (đường kính dây cung)

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

20 tháng 1 2021

B O C A I

- Gọi I là giao điểm của BC và OC

( IO = IA = 1,5cm ) ( OB = OA = 3cm )

Áp dụng đlí Py - ta - go cho tam giác vuông IBO ( ^I = 90^o ) , ta có :

\(OB^2=IB^2+IO^2\)

\(3^2=IB^2+1,5^2\)

\(IB^2=3^2-1,5^2=9-2,25=6,75\)

\(\Rightarrow IB=\sqrt{6,75}\approx2,6\)

Mà \(OA\perp BC\Rightarrow IC=IB\)( t/c đường kính vuông với dây cung )

=> BC = 2 . IB = 2 . 2,6 = 5,2

Vậy : BC = 5,2cm