Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Gọi H là trung điểm của BC.
Do dây BC vuông góc với OA tại H nên ta có:
Áp dụng định lí Pytgo vào tam giác OHB vuông tại H ta có:
Theo định lí quan hệ vuông góc đường kính và dây ta có: H là trung điểm BC nên:
3 căn 3/5 nhé
nếu cần trình bày thì bn kẻ hình ra
rồi có ob=oa=oc
ad đl pytago cho tam giác vuoong nnhes
Gọi I là trung điểm của AB
Suy ra: IO = IA = (1/2).OA = 3/2
Ta có: BC ⊥ OA (gt)
Suy ra: góc (OIB) = 90 °
Áp dụng định lí Pitago vào tam giác vuông OBI ta có: O B 2 = B I 2 + I O 2
Suy ra: B I 2 = O B 2 - I O 2
Ta có: BI = CI (đường kính dây cung)
- Gọi I là giao điểm của BC và OC
( IO = IA = 1,5cm ) ( OB = OA = 3cm )
Áp dụng đlí Py - ta - go cho tam giác vuông IBO ( ^I = 90^o ) , ta có :
\(OB^2=IB^2+IO^2\)
\(3^2=IB^2+1,5^2\)
\(IB^2=3^2-1,5^2=9-2,25=6,75\)
\(\Rightarrow IB=\sqrt{6,75}\approx2,6\)
Mà \(OA\perp BC\Rightarrow IC=IB\)( t/c đường kính vuông với dây cung )
=> BC = 2 . IB = 2 . 2,6 = 5,2
Vậy : BC = 5,2cm
a: Sửa đề: CM BN//OD
Xét (O) có
ΔBNC nội tiếp
CN là đường kính
Do đó: ΔBNC vuông tại B(1)
Xét (O) có
DB là tiếp tuyến
DC là tiếp tuyến
Do đó: DB=DC
hay D nằm trên đường trung trực của BC(2)
Ta có: OB=OC
nên O nằm trên đường trung trực của BC(3)
Từ (2) và (3) suy ra OD⊥BC(4)
Từ (1) và (4) suy ra BN//OD
a) Ta có AB và AC là tiếp tuyến tại A và B của (O)
=> AB⊥OB và AC⊥OC
Xét ΔAOB và ΔAOC có
OB=OC(=R)
Góc ABO=Góc ACO=90
OA chung
=> ΔAOB=ΔAOC
=> AB=AC
=> A∈trung trực của BC
Có OB=OC(=R)
=>O∈trung trực của BC
=> OA là đường trung trực của BC
Mà H là trung điểm của BC
=>A;H;O thẳng hàng
Xét ΔABO vuông tại B
=>A;B:O cùng thuộc đường tròn đường kính OA
Xét ΔACO vuông tại C
=>A;C;O cùng thuộc đuường tròn đường kính OA
=>A;B;C;O cùng thuộc đường tròn đường kính OA
b) Xét (O) có BD là đường kính
=>ΔBCD vuông tại C
=> CD⊥BC
Mà OA⊥BC
=>OA//CD
=> Góc AOC=Góc OCD
Xét ΔOCD có OC=OD
=> ΔOCD cân tại O
=> Góc OCD=Góc ODC
=> Góc ODC=Góc AOC
Xét ΔAOC và ΔCDK có
Góc AOC=Góc CDK
Góc ACO=Góc CKD=90
=>ΔAOC∞ΔCDK
=>AOCDAOCD= ACCKACCK
=>AC.CD=CK.OA
d) Xét ΔOCK vuông tại K
=> ΔOCK nội tiếp đường tròn đường kính OC
Xét ΔOHC vuông tại H
=> ΔOHC nội tiếp đường tròn đươngf kính OC
=> Tứ giác OKCH nội tiếp đường tròn đường kính OC
=> Góc CHK=Góc COD
Có góc BOA=Góc BCK( cùng phụ góc CBD)
Góc CHI+góc BCK=Góc BOA+ góc BAO
=>Góc CHI=Góc BAO
Mà Góc BAO=Góc CBD( cùng phụ góc ABC)
=> Góc CHI=Góc CBD
=> HI//BD
Xét ΔBCD có HI//BD và H là trung điểm của BC
=> HI là đường trung bình của ΔBCD
=> I là trung điểm của CK
Ta có BC ⊥ OA ⇒ BE = EC
E là trung điểm của OA ⇒ OE = AE và OA=OB= 3cm
OE=\(\dfrac{OA}{2}\) =\(\dfrac{3}{2}\) = 1.5 cm
ΔHBO vuông tại E :
BE=\(\sqrt{OB^2-OE^2}\)
=\(\sqrt{3^2-1.5^2}\) =\(\dfrac{3\sqrt{3}}{2}\) cm
⇒ BC= 2BE
= 2. \(\dfrac{3\sqrt{3}}{2}\) = \(3\sqrt{3}\) cm
a, Xét tam giác MON có : OM = ON = R
=> tam giác MON cân tại O, do OI vuông MN hay OI là đường cao
đồng thời là đường phân giác => ^MOI = ^ION
Vì BN là tiếp tuyến đường tròn (O) với N là tiếp điểm
=> ON vuông BN hay ^ONB = 900
Xét tam giác IOM và tam giác NOB có :
^IOM = ^NOB ( cmt )
^OIM = ^ONB = 900
Vậy tam giác IOM ~ tam giác NOB ( g.g )
=> \(\frac{IO}{NO}=\frac{IM}{NB}\Rightarrow IO.NB=IM.NO\)
ý b sáng mai mình gửi nhé ;))
sửa hộ mình chỗ này nhé : ^OIM = ^ONB = 900
b, Vì I là trung điểm điểm OA => \(IO=IA=\frac{OA}{2}=\frac{R}{2}\)
Theo định lí Pytago tam giác OIM ta được :
\(MI=\sqrt{OM^2-OI^2}=\sqrt{R^2-\frac{R^2}{4}}=\sqrt{\frac{3R^2}{4}}=\frac{\sqrt{3}R}{2}\)
Vì BM là tiếp tuyến đường tròn (O) và M là tiếp điểm
=> OM vuông MB hay ^OMB = 900 => tam giác OMB vuông tại M
Xét tam giác OMB vuông tại M, đường cao MI
Áp dụng hệ thức : \(\frac{1}{OM^2}+\frac{1}{MB^2}=\frac{1}{MI^2}\Rightarrow\frac{1}{R^2}+\frac{1}{MB^2}=\frac{1}{\frac{3R^2}{4}}\)
\(\Leftrightarrow\frac{1}{R^2}+\frac{1}{MB^2}=\frac{4}{3R^2}\Leftrightarrow\frac{1}{MB^2}=\frac{4}{3R^2}-\frac{1}{R^2}=\frac{1}{3R^2}\Rightarrow MB=\sqrt{3}R\)
CM : tam giác OMB = tam giác ONB ( ch - gn )
Ta có : \(S_{OMNB}=S_{OMB}+S_{ONB}=2S_{OMB}=\frac{2.1}{2}.OM.MB\)
\(=R.\sqrt{3}R=\sqrt{3}R^2\)
5 cm nha .