K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2024

A B C E D

Ta có

\(S_{ABC}=\dfrac{1}{2}.AB.AC=\dfrac{1}{2}.9.12=54cm^2\)

Xét tg vuông DEC và tg vuông ABC có chung \(\widehat{C}\)

=> tg DEC đồng dạng tg ABC

\(\Rightarrow\dfrac{S_{DEC}}{S_{ABC}}=\dfrac{S_{DEC}}{54}=\left(\dfrac{CD}{AC}\right)^2=\dfrac{4}{12}=\dfrac{1}{3}\) (Hai tg đồng dạng thì tỷ số diện tích bằng bình phương tỷ số đồng dạng)

\(\Rightarrow S_{DEC}=\dfrac{54}{3}=18cm^2\)

 

20 tháng 5 2022

loading...  nhớ đánh giá tốt giúp mk ạ

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=9^2+12^2=225\)

hay BC=15(cm)

Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)(Tính chất tia phân giác của tam giác)

hay \(\dfrac{BD}{9}=\dfrac{CD}{12}\)

mà BD+CD=BC(D nằm giữa B và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{9}=\dfrac{CD}{12}=\dfrac{BD+CD}{9+12}=\dfrac{BC}{21}=\dfrac{15}{21}=\dfrac{5}{7}\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{BD}{9}=\dfrac{5}{7}\\\dfrac{CD}{12}=\dfrac{5}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BD=\dfrac{45}{7}cm\\CD=\dfrac{60}{7}cm\end{matrix}\right.\)

Vậy: \(BD=\dfrac{45}{7}cm;CD=\dfrac{60}{7}cm\)

22 tháng 6 2021

undefined

20 tháng 3 2022

e tham khảo câu a

undefined

a: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

AD là phân giác

=>BD/CD=AB/AC=3/4

=>4DB=3CD

mà DB+DC=15

nên DB=45/7cm; DC=60/7cm

b: Xet ΔABC vuông tại A và ΔEDC vuông tại E có

góc C chung

=>ΔABC đồng dạng với ΔEDC

15 tháng 2 2016

mình mới học lớp 7 thôi

15 tháng 2 2016

moi hok lop 6

a: BC=căn 12^2+16^2=20cm

Xét ΔABC có AD là phân giác

nên BD/DC=AB/AC=3/4

=>BD/3=DC/4=(BD+DC)/(3+4)=20/7

=>BD=60/7cm; DC=80/7cm

Xét ΔCAB có ED//AB

nên ED/AB=CD/CB=4/7

=>ED/12=4/7

=>ED=48/7cm

b: S ABC=1/2*12*16=96cm2

BD/BC=3/7

=>S ABD/S ABC=3/7

=>S ABD=288/7cm2

a: Xet ΔCED vuông tại E và ΔCAB vuông tại A có

góc C chung

=>ΔCED đồng dạng với ΔCAB

b: ΔCAB có DE//AB

nên CD/CB=DE/AB

=>CD/CE=CB/AB=15/9=5/3

c: AD là phân giác

=>BD/AB=CD/AC

=>BD/3=CD/4=15/7

=>BD=45/7cm

=>BD/BC=3/7

=>\(S_{ABD}=\dfrac{3}{7}\cdot S_{ABC}=\dfrac{3}{7}\cdot\dfrac{1}{2}\cdot9\cdot12=108\cdot\dfrac{3}{14}=54\cdot\dfrac{3}{7}=\dfrac{162}{7}\left(cm^2\right)\)

19 tháng 4 2018

A B C D E

a) Ra có tam giác ABC vuông tại A ( gt )

\(\Rightarrow BC^2=AB^2+AC^2=9^2+12^2=81+144=225\left(cm\right)\)

\(\Rightarrow BC=15\left(cm\right)\)

Vì AD là tia phân giác của \(\widehat{BAC}\)( gt )

\(\Rightarrow\frac{DC}{DB}=\frac{AC}{AB}=\frac{12}{9}=\frac{4}{3}\Rightarrow\frac{DC+DB}{DB}=\frac{4+3}{3}=\frac{7}{3}\)\(\Rightarrow\frac{BC}{DB}=\frac{7}{3}\)

\(\Rightarrow DB=\frac{3}{7}.BC=\frac{3}{7}.15=\frac{45}{7}\left(cm\right)\)

\(\Rightarrow DC=15-\frac{45}{7}=\frac{60}{7}\left(cm\right)\)

Ta có DE // AB ( Vì AB và DE vuông góc với AC )

Áp dụng hệ quả định lý Ta lét ta có:

\(\Rightarrow\frac{DE}{AB}=\frac{CD}{CB}=\frac{60}{\frac{7}{15}}=\frac{4}{7}\)\(\Rightarrow DE=\frac{4}{7}.AB=\frac{4}{7}.9=\frac{36}{7}\left(cm\right)\)

b) Ta có: \(S_{ADC}=\frac{1}{2}.DE.AC=\frac{1}{2}.\frac{36}{7}.12=\frac{216}{7}\left(cm^2\right)\)

Ta có: \(S_{ABC}=\frac{1}{2}.AB.AC=\frac{1}{2}.9.12=54\left(cm^2\right)\)

\(\Rightarrow S_{ABD}=S_{ABC}-S_{ACD}=54-\frac{216}{7}=\frac{126}{7}\left(cm^2\right)\)

30 tháng 3 2018

hihi

chúc bạn học tốt

hihi

bye bye

23 tháng 5 2020

oiop0-990