Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ Kẻ $CH \perp AB (H \in AB) \\
NK \perp AB ( K \in AB)$
Xét $\triangle{ACH}$ vuông tại $H$ có :
$NK // CH$ ( cùng $\perp AB$ )
$\implies \dfrac{NK}{CH} = \dfrac{AN}{AC} = \dfrac13$ ( Hệ quả Ta-lét )
Ta có : $\dfrac{S_{ANM}}{S_{ABC}} = \dfrac{ \dfrac12.AM.NK}{ \dfrac12.AB.CH} = \dfrac{AM}{AB}.\dfrac{NK}{CH} = \dfrac23.\dfrac13 = \dfrac29$
$\implies S_{AMN} = \dfrac29.S_{ABC} = 12 \; (cm^2)$
2/ Gọi $a,b,c$ lần lượt là độ dài hai cạnh góc vuông và cạnh huyền
Theo đề bài ta có : $a-7=b$
Lại có : $S = \dfrac12.a.b = 30 \; (cm^2)$
$\iff a.(a-7) = 60 \\
\iff a^2-7a-60 = 0 \\
\iff \cdots \\
\iff (a-12)(a+5) = 0 \\
\iff \left[ \begin{array}{l} {} a-12=0 \\ a+5=0 \\ \end{array}
ight. \\
\iff \left[ \begin{array}{l} {} a=12 \\ a=-5 \; \textrm{( loại vì độ dài một cạnh của tam giác không thể âm )} \\ \end{array}
ight. \\
\implies b = a-7 = 12-7 = 5$
Áp dụng định lý Pytago
Tính được $c = \sqrt{a^2+b^2} = 13$
Lại có : $S = \dfrac12.c.AH = 30 \; (cm^2)$
$\implies AH = \dfrac{60}c = \dfrac{60}{13} \approx 4,62 \; (cm^2)$
3/ Do hình vuông cũng là hình thoi
Nên diện tích hình vuông nhận $AB$ làm đường chéo là :
$S = \dfrac12.AB.AB = 98 \; (cm^2) \\
\implies AB^2 = 196 \\
\implies AB = 14 \\
\implies P_{ABCD} = 14.4 = 54 \; (cm^2)$
4/ Dễ cm $\dfrac{AM}{AB} = \dfrac13$
Xét $\triangle{ABC}$ có :
$MN // BC$ ( gt )
$\implies \triangle{AMN} \sim \triangle{ABC}$
Mà $\dfrac{AM}{AB} = \dfrac13$ (cmt)
$\implies$ tỉ số đồng dạng $k = \dfrac13$
$\implies$ tỉ số diện tích $= k^2 = \dfrac19$
$\iff \dfrac{S_{AMN}}{S_{ABC}} = \dfrac19 \\
\implies S_{AMN} = \dfrac19.S_{ABC} = \dfrac19.126 = 14 \; (cm^2)$
5/ Đề chưa rõ
bạn vào câu hỏi tương tự sẽ có lời giải đấy
Vẽ hình ra rồi tinh diện tích hình tam giác ABC và ABN;ABM . Dựa vào công thức tính diện tích hình tam giác rồi so sánh thôi mà. Dễ lắm nhưng mink ko có thời gian để làm bài này ấy cku
Cho tam giác ABC. Trên các cạnh BC lấy điểm D sao cho BD = 2/5 BC. Trên AD lấy điểm O. Tính tỉ số diện tích tam giác AOB và diện tích tam giác AOC.
3AN=2CN
=>\(AN=\dfrac{2}{3}CN\)
=>\(AN=\dfrac{2}{5}AC\)
=>\(CN=\dfrac{3}{5}AC\)
CM=2BM
=>\(BM=\dfrac{1}{3}BC;CM=\dfrac{2}{3}BC\)
Vì \(CN=\dfrac{3}{5}AC\)
nên \(S_{MNC}=\dfrac{3}{5}\cdot S_{AMC}\)
=>\(S_{AMC}=30:\dfrac{3}{5}=50\left(cm^2\right)\)
Vì \(CM=\dfrac{2}{3}BC\)
nên BC=1,5CM
=>\(S_{ABC}=1,5\cdot S_{AMC}=1,5\cdot50=75\left(cm^2\right)\)