K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2015

Giả sử a; b; c lần lượt là các cạnh của tam giác ABC ứng với 3 đường cao h= 3,6; h= 4,5; hc = 6 (a = BC; b = AC; c = AB)

Ta có a.h= b.h= c.hc (cùng bằng 2.SABC)

=> 3,6.a = 4,5.b = 6.c => 36a = 45b = 60c => \(\frac{36a}{180}=\frac{45b}{180}=\frac{60c}{180}\) =>  \(\frac{a}{5}=\frac{b}{4}=\frac{c}{3}\)

Đặt \(\frac{a}{5}=\frac{b}{4}=\frac{c}{3}=k\) ( k khác 0) => a = 5k; b = 4k ; c = 3k

Nhận xét: (4k)2 + (3k)= (5k)=> b+ c= a => Tam giác ABC vuông tại A

A B C H

Áp dụng hệ thức lượng trong tam giác vuông ABC có: AH.BC = AB . AC => 3,6.5k = 3k.4k => 12k2 = 18k => k = 18/12 = 1,5

=> BC = 5k = 5.1,5 = 7,5 

=> S(ABC) = AH.BC /2 = 3,6.7,5: 2 = 13,5

13 tháng 1 2018

a, Áp dụng hệ thức giữa cạnh và đường cao trong các tam giác vuông

∆AHC và ∆AHB ta có:

AE.AC =  A H 2 = AD.AB => ∆AHC  ~ ∆AHB(c.g.c)

b. Áp dụng hệ thức giữa cạnh và đường cao trong tam giác vuông ∆ABC tính được AH = 3cm => DE = 3cm

Trong ∆AHB vuông ta có:

tan A B C ^ = A H H B =>  A B C   ^ ≈ 56 0 , S A D E = 27 13 c m 2

 

 

 

a: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

hay AH=7,2(cm)

21 tháng 10 2021

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

c: \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{6\cdot4.5}{2}=3\cdot4.5=13.5\left(cm^2\right)\)

25 tháng 6 2018

Ta có \(S_{ABC}=S_{ABH}+S_{ACH}=54cm^2+96cm^2=150cm^2\)

25 tháng 6 2018

Chứng minh tam giác ABH đồng dạng với tam giác ACH \((ABH=ACH\)cùng phụ\()\)

\(\Leftrightarrow\frac{AB^2}{AC^2}=\frac{AH^2}{BH^2}=\frac{S_{BHC}}{S_{AHC}}=\frac{54}{96}=\frac{9}{16}\Leftrightarrow\frac{AH}{BH}=\sqrt{\frac{9}{16}}=\frac{3}{4}=x\Rightarrow\)

\(\Rightarrow AH=4x;HB=3x\)

\(S_{ABH}=\frac{1}{2}AB\cdot BH=54\Rightarrow\frac{1}{2}\cdot4x\cdot3x=54\Rightarrow6x^2=54\Rightarrow x^2=9\Rightarrow x=3\)

\(\Rightarrow HB=3\cdot3=9;AH=4\cdot3=12\)

\(S_{ACH}=\frac{1}{2}AC\cdot CH=96\Rightarrow AC=\frac{96}{6}=16cm\)

\(\Rightarrow BC=HB+HC=9+16=25cm\)

Hình vẽ cho bạn dựa theo :

96 54 C y H A B x

Chúc bạn học tốt~

DD
20 tháng 6 2021

\(NP=4,5+6=10,5\left(cm\right)\)

Áp dụng tích chất đường phân giác: 

\(\frac{MN}{NE}=\frac{MP}{EP}\Leftrightarrow\frac{MN}{4,5}=\frac{MP}{6}\Leftrightarrow MN=\frac{3}{4}MP\).

Áp dụng định lí Pythagore:

\(NP^2=MP^2+MN^2\)

\(\Leftrightarrow10,5^2=MP^2+\left(\frac{3}{4}MP\right)^2\Leftrightarrow MP=8,4\Rightarrow MN=6,3\)

\(MH=\frac{MN.MP}{NP}=\frac{8,4.6,3}{10,5}=5,04\)

\(NH=\frac{MN^2}{NP}=\frac{6,3^2}{10,5}=3,78\)

\(HE=NE-NH=4,5-3,78=0,72\)

\(S_{MHE}=\frac{1}{2}.MH.HE=\frac{1}{2}.0,72.5,04=1,8144\left(cm^2\right)\)