K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2016

Chiều cao là:

(25-7):2=9 (cm)

Cạnh đáy là:

9+7=16 (cm)

diện tích hình bình hành là:

16x9=144 (cm2)

đ/s : 

26 tháng 5 2016

Chiều cao hình bình hành là :

( 25 - 7 ) : 2 = 9 ( cm )

Cạnh đáy hình bình hành là :

25 - 9 = 16 ( cm )

diện tích hình bình hành là :

16 x 9 = 144 ( cm2 )

Đáp số : 144 cm2

27 tháng 8 2023

Để tính độ dài cạnh kề với cạnh có độ dài bằng 4, ta có thể sử dụng định lý Pythagoras. Định lý này cho biết rằng trong một tam giác vuông, bình phương của độ dài cạnh huyền (đường chéo dài nhất) bằng tổng bình phương của độ dài hai cạnh góc vuông.

Trong trường hợp này, ta có độ dài hai đường chéo là 6 và 8. Để tìm độ dài cạnh kề với cạnh có độ dài bằng 4, ta cần tìm độ dài cạnh còn lại của hình bình hành.

Áp dụng định lý Pythagoras, ta có: (độ dài cạnh kề)^2 + (độ dài cạnh kề)^2 = (độ dài đường chéo)^2

Đặt độ dài cạnh kề là x, ta có: x^2 + 4^2 = 6^2

Giải phương trình trên, ta có: x^2 + 16 = 36 x^2 = 36 - 16 x^2 = 20 x = √20

Vậy độ dài cạnh kề với cạnh có độ dài bằng 4 là √20.

19 tháng 9 2017

Đáp án: A

Gọi chiều dài, chiều rộng của mảnh vườn lần lượt là  (m) 

Theo đề bài ta có:

16 tháng 9 2021

BH là đường cao nên cũng là đường trung trực của tam giác ABC đều

\(\Rightarrow BH\perp AC\) tại H cũng là trung điểm của BC

\(\Rightarrow AH=HC=\dfrac{1}{2}AC=\dfrac{3}{2}a\)

Vì \(\Delta AHB\) vuông tại H nên \(BH=\sqrt{AB^2-AH^2}=\sqrt{9a^2-\dfrac{9}{4}a^2}=\dfrac{3a\sqrt{3}}{2}\)

\(S_{ABC}=\dfrac{1}{2}BH\cdot AC=\dfrac{1}{2}\cdot\dfrac{3a\sqrt{3}}{2}\cdot3a=\dfrac{9a^2\sqrt{3}}{4}\left(đvdt\right)\)

 

 

a: AB=20cm; AH=(25+20)/2=22,5m

S=22,5^2=506,25m2

b: Xét tứ giác ABMC có

AB//MC

AB=MC

=>ABMC là hbh

=>S ABI=S CMI

c: BI/IC=1

13 tháng 9 2019

Đáp án D

AH
Akai Haruma
Giáo viên
27 tháng 2 2023

Lời giải:

Gọi bán kính đáy của hình trụ là $r$ thì chiều cao $h=4r$

Diện tích xung quanh: $S_{xq}=2\pi rh =2r.4r\pi = 8r^2\pi = 288\pi$

$\Rightarrow r^2=36\Rightarrow r=6$ (cm)

27 tháng 3 2021

Gọi O là giao của hai đường chéo

Ta có: \(\overrightarrow{AB}=\overrightarrow{AO}+\overrightarrow{OB}\)\(\overrightarrow{AD}=\overrightarrow{AO}+\overrightarrow{OD}=\overrightarrow{AO}-\overrightarrow{OB}\)

Suy ra : \(\overrightarrow{AB}.\overrightarrow{AD}=AO^2-OB^2=3^2-4^2=-7\)

\(\Leftrightarrow AB^2.AD^2=49\)\(\Leftrightarrow AD^2=\dfrac{49}{16}\Leftrightarrow AD=\dfrac{7}{4}\)

 

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Từ định lí cosin trong tam giác ABC, ta suy ra: \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\)

Mà \({\sin ^2}A + {\cos ^2}A = 1\)

\( \Rightarrow \sin A =  \pm \sqrt {1 - {{\cos }^2}A} \)

Do \({0^o} < \widehat A < {180^o}\) nên \(\sin A > 0\) hay \(\sin A = \sqrt {1 - {{\cos }^2}A} \)

Ta có:

\(\begin{array}{l}\sin A = \sqrt {1 - {{\left( {\frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}} \right)}^2}}  = \sqrt {1 - \frac{{{{\left( {{b^2} + {c^2} - {a^2}} \right)}^2}}}{{4{b^2}{c^2}}}} \\ = \sqrt {\frac{{4{b^2}{c^2} - {{\left( {{b^2} + {c^2} - {a^2}} \right)}^2}}}{{4{b^2}{c^2}}}}  = \frac{{\sqrt {4{b^2}{c^2} - {{\left( {{b^2} + {c^2} - {a^2}} \right)}^2}} }}{{2bc}}\end{array}\)

Thế vào công thức tính diện tích tam giác ABC ta được:

\(S = \frac{1}{2}bc.\frac{{\sqrt {4{b^2}{c^2} - {{\left( {{b^2} + {c^2} - {a^2}} \right)}^2}} }}{{2bc}} = \frac{1}{4}.\sqrt {4{b^2}{c^2} - {{\left( {{b^2} + {c^2} - {a^2}} \right)}^2}} \)

Chú ý:

Nếu tiếp tục biến đổi công thức diện tích ta được

\(\begin{array}{l}S = \frac{1}{4}.\sqrt {\left( {2bc + {b^2} + {c^2} - {a^2}} \right)\left( {2bc - {b^2} - {c^2} + {a^2}} \right)} \\ = \frac{1}{4}.\sqrt {\left[ {{{\left( {b + c} \right)}^2} - {a^2}} \right]\left[ {{a^2} - {{\left( {b - c} \right)}^2}} \right]} \\ = \frac{1}{4}.\sqrt {\left( {b + c - a} \right)\left( {b + c + a} \right)\left( {a - b + c} \right)\left( {a + b - c} \right)} \end{array}\)

Đến đây, đặt \(p = \frac{{a + b + c}}{2}\), là nửa chu vi tam giác ABC, ta suy ra:

\(\left\{ \begin{array}{l}b + c + a = 2p\\b + c - a = b + c + a - 2a = 2\left( {p - a} \right)\\a - b + c = b + c + a - 2b = 2\left( {p - b} \right)\\a + b - c = b + c + a - 2c = 2\left( {p - c} \right)\end{array} \right.\)

\(\begin{array}{l} \Rightarrow S = \frac{1}{4}\sqrt {2\left( {p - a} \right).2p.2\left( {p - b} \right).2\left( {p - c} \right)} \\ \Leftrightarrow S = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)} \end{array}\)

(công thức Heron)