Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt 2a/5b=5b/6c=6c/7d=7d/2a=k
=> k^4=2a/5b.5b/6c.6c/7d.7d/2a=1
=>k=1 hoặc k=-1
Với k=1 thì B=4
Với k=-1 thì B=-4
Vậy B=4 hoặc B=-4
\(\frac{2a}{a+b}+\frac{b}{a-b}=2< =>2\left(a-b\right)a+b\left(a+b\right)=2\left(a-b\right)\left(a+b\right).\)
\(< =>2a^2-2ab+ab+b^2=2a^2-2b^2\)
\(< =>3b^2-ab=0< =>b\left(3b-a\right)=0=>\orbr{\begin{cases}b=0\\3b-a=0\end{cases}}\)\(< =>\orbr{\begin{cases}b=0\\a=3b\end{cases}=>\orbr{\begin{cases}A=3\\A=1\end{cases}}}\)
Bài này chắc phải giải theo kiểu lớp 7
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{2a}{3b}=\dfrac{3b}{4c}=\dfrac{4c}{5d}=\dfrac{5d}{2a}=\dfrac{2a+3b+4c+5d}{3b+4c+5d+2a}=1\)
\(\Rightarrow\left\{{}\begin{matrix}2a=3b\\3b=4c\\4c=5d\\5d=2a\end{matrix}\right.\)\(\Rightarrow2a=3b=4c=5d\)
\(\Rightarrow C=\dfrac{2a}{3b}+\dfrac{3b}{4c}+\dfrac{4c}{5d}+\dfrac{5d}{2a}\)
\(=\dfrac{2a}{2a}+\dfrac{2a}{2a}+\dfrac{2a}{2a}+\dfrac{2a}{2a}\)
\(=1+1+1+1\)
\(=4\)
Vậy \(C=4\)
\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow ad=bc\)
Ta có:
Nếu:
\(\dfrac{2a+c}{2b+d}=\dfrac{a-c}{b-d}\Leftrightarrow\left(2a+c\right)\left(b-d\right)=\left(a-c\right)\left(2b+d\right)\)
\(\Leftrightarrow2a\left(b-d\right)+c\left(b-d\right)=a\left(2b+d\right)-c\left(2b+d\right)\)
\(\Leftrightarrow2ab-2ad+bc-cd=2ab+ad-2bc+cd\)
\(\Leftrightarrow ad=bc\)
\(\Leftrightarrow\dfrac{2a+c}{2b+d}=\dfrac{a-c}{b-d}\left(đpcm\right)\)
a) `A=a. 1/3 + a. 1/4 - a.1/6 = a. (1/3+1/4 -1/6)=a. 5/12`
Thay `a=-3/5: A=-3/5 . 5/12 =-1/4`
b) `B=b. 5/6+ b. 3/4-b. 1/2=b.(5/6+3/4-1/2)=b. 13/12`
Thay `b=12/13: B=12/13 . 13/12=1`.
a) Ta có: \(A=a\cdot\dfrac{1}{3}+a\cdot\dfrac{1}{4}-a\cdot\dfrac{1}{6}\)
\(=a\left(\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{6}\right)\)
\(=a\cdot\left(\dfrac{4}{12}+\dfrac{3}{12}-\dfrac{2}{12}\right)\)
\(=a\cdot\dfrac{5}{12}\)
\(=\dfrac{-3}{5}\cdot\dfrac{5}{12}=\dfrac{-1}{4}\)
b) Ta có: \(B=b\cdot\dfrac{5}{6}+b\cdot\dfrac{3}{4}-b\cdot\dfrac{1}{2}\)
\(=b\left(\dfrac{5}{6}+\dfrac{3}{4}-\dfrac{1}{2}\right)\)
\(=b\cdot\left(\dfrac{10}{12}+\dfrac{9}{12}-\dfrac{4}{12}\right)\)
\(=b\cdot\dfrac{5}{4}\)
\(=\dfrac{12}{13}\cdot\dfrac{5}{4}=\dfrac{60}{52}=\dfrac{15}{13}\)
\(\dfrac{1}{2a-1}=\dfrac{2}{3b-1}=\dfrac{3}{4c-1}\Rightarrow\dfrac{2a-1}{1}=\dfrac{3b-1}{2}=\dfrac{4c-1}{3}\)
\(\Rightarrow\dfrac{36a-18}{18}=\dfrac{24b-8}{16}=\dfrac{12c-3}{9}\)và 3a+2b-c=4
Áp dụng t/c dãy tỉ số bằng nhau:
\(\dfrac{36a-18}{18}=\dfrac{24b-8}{16}=\dfrac{12c-3}{9}=\dfrac{36a-18+24b-8-12c+3}{18+16-9}=\dfrac{12\left(3a+2b-c\right)-23}{25}=\dfrac{12\cdot4-23}{25}=1\)
=>2a-1=1<=>a=1
3b-1=2<=>b=1
4c-1=3<=>c=1
Vậy...
a) Ta có: \(a\left(-\dfrac{3}{2}\right)+a\cdot\dfrac{1}{4}-a\cdot\dfrac{5}{6}\)
\(=a\left(-\dfrac{3}{2}+\dfrac{1}{4}-\dfrac{5}{6}\right)\)
\(=a\left(\dfrac{-18}{12}+\dfrac{3}{12}-\dfrac{10}{12}\right)\)
\(=a\cdot\dfrac{-25}{12}\)(1)
Thay \(a=\dfrac{3}{5}\) vào biểu thức (1), ta được:
\(\dfrac{3}{5}\cdot\dfrac{-25}{12}=\dfrac{-75}{60}=\dfrac{-5}{4}\)
\(\dfrac{a}{b}=\dfrac{2}{3}\)=>3a=2b ; a=\(\dfrac{2}{3}b\)
=>\(\dfrac{3a+2b}{a+5b}=\dfrac{2b+2b}{\dfrac{2}{3}b+5b}=\dfrac{4b}{\dfrac{2}{3}b+\dfrac{15}{3}b}=\dfrac{4b}{\dfrac{17}{3}b}=\dfrac{12}{17}\)
`a/b=3/5=>a=3/5b`
Thay `a=3/5b` vào `[2a-5b]/[a-3b]` có:
`[2. 3/5b-5b]/[3/5b-3b]`
`=[6/5b-5b]/[3/5b-3b]`
`=[-19/5b]/[-12/5b]`
`=[-19/5]/[-12/5]=19/12`
\(\dfrac{2a-5b}{a-3b}=\dfrac{2\left(\dfrac{a}{b}\right)-5}{\left(\dfrac{a}{b}\right)-3}=\dfrac{2.\dfrac{3}{4}-5}{\dfrac{3}{4}-3}=\dfrac{14}{9}\)